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Abstract: In this paper we treat the problem to analyse a data set constituted by 
multivariate growth curves for different subjects; thus in this context we deal 
with 3-way data tables. Nevertheless, it is not possible using factorial techniques 
proposed to deal with 3-way data matrices, because the observations are 
generally not equally spaced; moreover a multilevel approach founded on 
polynomial models is not suitable to deal with intrinsic nonlinear models. We 
propose a non-factorial technique to analyse auxological data sets using an 
intrinsic nonlinear multivariate growth model with autocorrelated errors. The 
application to a real data set of growing children gave easily interpretable 
results. 
 
Keywords: Longitudinal studies, multivariate growth models, nonlinear 
regression, serial correlation, MLE, three-way data. 
 
 
1. Introduction1 
 
The analysis of data sets constituted by multivariate observations depending on 
time for different subjects is a widely studied topic; it depends on many 
conditions concerning the kind of data, their quality, the purpose of the analysis, 
and so on. In this paper, we are concerned mainly with the analysis of real data 
constituted by multivariate growth measures of a set of children, surveyed on 
different times. Therefore, at least formally, we have a 3-way data table and so 
we could think to use one of the specific techniques proposed to deal with 
3-way data matrices, based mainly on different types of factorial decompositions. 
Three common methods proposed to deal with 3-way matrices “individuals x 
variables x occasions” are: 
a)  STATIS (Escoufier, 1987), that can be seen as a principal component 

analysis where different statistical studies with many variables are compared, 
by obtaining a graphical representation where the points are the studies and 
the proximity of the points gives a similarity among the studies; 

b)  the Tucker3 model (Tucker, 1966), and  
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c)  the PARAFAC (PARAllel FACtor) model (Harshman, 1970). 
Both models b) and c) try to decompose the initial 3-way matrix by considering 
sets of virtual units, variables and occasions according to a minimisation function 
(Rizzi, Vichi, 1995). Many other methods have been proposed but few means 
are available to decide which method is better than the others when we have real 
data disposed in a 3-way matrix (Kroonenberg, 1992). Furthermore, these 
methods deal with 3-way matrices in which the occasions are always the same 
for all subjects and give generally linear decompositions. Therefore, these 
methods are entirely unusable for data sets constituted by individual observations 
with different survey times, as in our case. It is also difficult with these methods 
to deal properly with a serial correlation structure that could be present in the 
individual data. 
In the following sections, we first present a data set and describe the multilevel 
models that could be used with growth data. Then, in section 3 we present an 
explicit nonlinear multivariate growth model with autocorrelated errors and in 
section 4 we treat the problem of the estimation of the involved parameters. In 
section 5 we present the results obtained by the analysis of our data set. 
 
 
2. Analysis of multivariate growth curves 
 
A longitudinal data set is constituted by k variables observed on n subjects in 
different occasions; in particular, our data set is a sample data set in the 
framework of an auxological study in order to assess growth standards: we have 
the weight and the height (k=2) of babies (n=64) observed in different occasions, 
starting mainly in the first three months from the birth and ending at an age 
between 3 and 5 years old. For the i-th baby and for each variable the relevant 
information is the observed growth curve with mi different occasion tij 
(i=1,2,...,n; j=1,2,...,mi). Lags of successive surveys are in general very different 
among subjects and within the same subject so that the tij are unequally spaced; 
also, the number of occasions mi varies for each subject. Typical growth curves 
are reported in figure 1 and figure 2. 
 
Figure 1: Growth curves of height and 
weight for a single subject 

Figure 2: Growth curves of height for 
five different subjects. 
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Classification approaches founded on cluster analysis techniques (Mineo, 1987; 
Chiodi, 1989) are not useful in this context because the data cannot be seen as T 
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matrices of equal dimensions n×k; indeed sections of the 3-way data set are 
possible only along each subject. 
Among useful approaches to the analysis of longitudinal data set, with different 
survey times for different subjects and with non constant time lags for each 
subject, the multilevel models can be taken particularly into account; in these 
models variability components of 1st level (different measurements of one 
subject) and of 2nd level (the different subjects) are considered. Besides 
multilevel factorial approaches (Borra, Di Ciaccio, 1996), it is interesting the 
2-level growth model, proposed by Goldstein and others (1994): 
 

yij= ∑
=

γ
p

0u

u
ijiu t + ij

q

1v
ijvv ez +α∑

=
          (1) 

 
where yij is the j–th measurement on the i–th subject, γiu are the polynomial 
coefficients for the level 1 (the successive measurements), tij is the time of the 
j-th measurement on the i-th subject, zijv are the covariates, αv are the coefficient 
for the covariates z’s (level 2) and eij are the level 1 random terms that usually 
are assumed to be distributed independently with zero mean and constant 
variance. So these models can be considered an extension of the polynomial 
models for growth curves (Rao, 1965). 
However, we did not use this model basically for two reasons: we have been not 
interested, at least in this paper, in examining random coefficient models (in the 
multilevel model introduced above the γiu coefficients are random at level 2 with 
coefficient values varying and covarying between individuals); moreover the 
level 1 systematic components, i.e. the time dependence of the individual 
measurements, have to be in our case expressly nonlinear: so we can not 
consider a polynomial model, even though of high degree, to obtain individual 
parameter estimates with a well defined biological meaning. Another opportunity 
is to consider a 2-level model with nonlinear systematic components on the 
parameters, but linear by using Taylor approximations of the first order (Milani, 
Bossi, 1988). In the next section, we analyse the presented data set using an 
explicit multivariate nonlinear growth curve model with fixed parameters. 
 
 
3. Nonlinear multivariate growth model with autocorrelated errors 
 
The main purpose of the present paper is an exploratory analysis of an 
auxological data set, to understand if the children have a similar growth with 
respect to the observed variables, and to understand which model can be 
adopted to describe the dynamic of the growth. Given very short time series, 
with variable time lags, we found very hard, or even impossible, to deal with this 
data with proper dynamic models, so that we preferred an approach based on a 
nonlinear growth model, which has the advantage of summarising the behaviour 
of each individual with a small set of parameters easily interpreted.  
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For sake of simplicity, and only to look for simple descriptive quantities which 
can summarise such complex data, we tried to fit, for each individual and for 
each variable, a general nonlinear growth curve of the family of Von Bertalanffy 
curves (Von Bertalanffy, 1957), that is a three parameter exponential curve: 
 

E(yt)= γ+ α (1-e-βt)            (2) 
 
Of course, the whole human growth can not be well described by only 3 
parameters (Tanner, 1981): many curves have been proposed for the description 
of human growth even with seven parameters (Jolicoeur, Pernin, and Pontier, 
1988); however, our data set concerns only the first years of human life, when 
growth speed decreases and this aspect is satisfactorily described by simple 
models. The model (2) has an easy interpretation since γ is the value of y at 
birth, α is a scale parameter related to the whole growth and β depends on the 
logarithmic growth speed: the individual fits have resulted generally better than 
those obtained by Gompertz or logistic curves. 
The whole model is: 
 

yijh=γih+αih[1-exp(-βihtij)]+εijh      i=1,2,...,n; j=1,2,...,mi; h=1,...,k      (3) 

 
where yijh is the value of the h-th variable observed at the j-th occasion tij of the 
i-th individual, γih, αih, βih are the parameters of the i-th individual and h-th 
variable, εijh is the random error.  
A peculiarity of growth curves is the possible presence of serial correlation 
between the measurements of an individual (Palmer, Phillips and Smith, 1991); 
so we assumed that random errors εijh are normally distributed and the generic 
random vector εεih, (constituted by the mi errors of the h-th variable and the i-th 
individual) has covariance matrix: 
 

E(εεih εε'ih)= σ2
ih Rih,            (4) 

 
where σ2

ih is the common variance and Rih is a correlation matrix with generic 
(j,s) element ρihjs 

representing the correlation between elements of εεih at times tj 

and ts. Of course, we need a model for the autocorrelations, in order to employ a 
limited number of parameters. Since the times tij are not equally spaced, we 
could not employ ordinary discrete time ARMA models, so that we modelled the 
autocorrelations according to an exponential decay (Diggle, 1988): 

ρihjs
 = E(εijh εish)/σ2

ih = |tt|
ih

isij−ρ   ρih≥0.        (5) 

 
This is the autocorrelation function of a continuous AR(1) process (Jones, 
Ackerson, 1990), which allows only non negative serial correlation. At the first 
stage, the autocorrelations ρih have been supposed different for each individual 
and each variable. Finally, we supposed that random errors εεih are not correlated 
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among different individuals and different variables. Individual correlations 
among variables are taken into account in the systematic component of the 
model (3). 
 
 
4. Estimation of the parameters of the model 
 
With the assumptions of the previous section, the log-likelihood function lih for 
the mi data of the i-th individual and the h-th variable is given by: 
 

lih(αih,γih,βih,ρih,σ2
ih|yih)= 

=-n log(σ2
ih)/2 - log(|Rih|)/2 - (yih -fih)'Rih

-1(yih-fih)/(2σ2
ih) 

(i=1,2,...,n; h=1,...,k)  (6) 
 
being yih the vector of observed data and fih the vector of fitted data, depending 
on the unknown parameters αih, γih, βih, according to the model defined by (3), 
and Rih is defined through the relations (4) and (5). 
In order to estimate the whole set of parameters, we have to maximise the above 
quantities; for sake of brevity we do not report in this paper the explicit 
expressions of the inverse and the determinant of Rih, since simple expressions 
are given by Núñez-Antón and Woodworth (1994): in fact, as in the usual case 
of equally spaced times and discrete time AR(1) process, the inverse of Rih is a 
tridiagonal or Jacobi matrix depending only on ρih and the set of tij, while its 
determinant is given by a simple factorisation. 
As usual in ML estimation in regression models, we can estimate σ2

ih as an 
explicit function of the other parameters αih, γih, βih, ρih and then maximise the 
likelihood concentrated on the latter set of parameters. In fact, the MLE s2

ih of 
the variance component σ2

ih is: 
 

s2
ih(αih,γih,βih,ρih)=(yih-fih)'Rih

-1(yih-fih)/n,         (7) 

 
so that by substitution in lih(.) we have the concentrated log-likelihood: 
 

lih(αih,γih,βih,ρih,s2
ih(.))=-n log((yih-fih)'Rih

-1(yih-fih)/n)/2-log(|Rih|)/2-n/2        (8) 

 
which is maximised with respect to αih, γih, βih, ρih, with ordinary optimisation 
methods. When we deal with models with reduced sets of parameters or 
however with constrains on the parameters, overall sample likelihood has to be 
used: of course the whole log-likelihood is obtained adding lih(.) for all values of 
i and h, since we supposed the independence of the random errors among 
individuals and variables. Specific values of the parameters could be tested by 
comparing the unconstrained maximum with the maximum obtained imposing ν 
constraints to the parameters and then using the LR (Likelihood Ratio) test; 
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asymptotically -2log(LR) follows a χ2 distribution with ν degrees of freedom, 
but unfortunately the number mi of observations for each individual is generally 
too small in our data set, so that the χ2 approximation to LR could be used only 
to give a rough judgement on the reliability of specific hypothesis. 
 
 
5. Application to a real data set 
 
The main aim of the proposed parameterisation for our data set is to deal with a 
2-way data set, because the parameters of the systematic part of the model, γih, 
αih, βih, summarise the third way, i.e. time. In a first stage we applied the above 
parameterisation to our data set, obtaining a set of 3×n×k parameter estimates: 
in fact we have 3 estimated parameters for each of the n=64 individuals and for 
each of the k=2 variables (height and weight). The analysis of the relationships 
between the estimates suggested some reductions in the number of parameters; 
for the i-th individual we put: 
ρi1=ρi2=ρi (autocorrelations are equal for the two variables but generally 
different among individuals); 
βi1=βi2=βi (equal individual growth speeds for the two variables but generally 
different among individuals). A similar simplification is used by Lundbye-
Christensen (1991). 
Indeed the last simplification is also strongly suggested by the data, as well as 
the need of using all the information at disposal to estimate individual growth 
speeds; in fact the height has a 12% average percentage of missing data. 
Furthermore, the strong internal (infra-individual) linear correlation between the 
height and weight suggested us this simplification. The decrease of likelihood of 
this simplified model was not significant, so that we summarised the data set by 
means of the estimates of the five parameters of the systematic component: α^ i1,
γ^i1, α^ i2, γ^i2  and the common slope β

^
i. This estimated common individual slope β

^
i 

resulted to be highly correlated (R=0.95) with the individual slopes β
^

i1 and β
^

i2 

estimated separately for the two variables. 
The data did not present any evidence of difference between male and female 
parameters. Two individual parameter estimates appeared to be very far from the 
bulk of the data, so that we eliminated them from subsequent stages: they belong 
to children for which the above assumptions lead to unrealistic parameter 
estimates, since their observed growth curves are almost linear. In table 1 we 
report the mean and standard deviation of the individual estimates of the 
parameters, computed on the remaining 62 subjects. 
 
Table 1: Mean and standard deviation of the individual parameter estimates, 
computed on 62 subjects 
Estimate γ^i1 α^ i1 γ^i2 α^ i2 ρ^ i β

^
i 

Mean 4.48 16.69 54.58 64.78 0.05 0.42 
Std. Dev. 1.19 5.48 4.99 13.97 0.06 0.20 
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An interesting aspect is the strong non-normality of the joint distribution of the 
estimates, as can be seen from figure 3, where we plotted the pairs of values of 
the estimates of αi1 and βi. We see some evidence against the joint normality of 
the sampling distribution of the estimates, as it can be expected given the 
intrinsic nonlinearity of the model (Seber, Wild, 1989) also from figure 4, where 
we reported the likelihood contour plot of the 22nd individual with respect to 
same pair of parameters (αi1 and βi, with i=22).  
 
Figure 3: Plot of 62 pairs of 
estimates of αi1 (x-axis) and βi 
(y-axis) 

Figure 4: Likelihood contour plot of 
the 22nd individual for the 
parameters αi1 and βi 
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6. Conclusion 
 
The above analysis shows that the model (3), together with the assumptions 
made on serial correlations, is suitable to analyse the growth of children. The 
data have suggested some reduction on the number of parameters: in particular 
we estimated a common individual slope β

^
i and a common individual serial 

correlation ρ̂i for both variables; even if there is still a strong collinearity among 
the estimates of the remaining parameters, in the present paper we do not 
mention any further reduction of parameters. 
A strong non normality of the sampling distribution of the parameter estimates is 
suspected, as usual in intrinsic nonlinear models. 
The obtained promising results induced us to deal, in a forthcoming paper, with 
random coefficient nonlinear models, in order to better deepen the study of the 
variability among individual growth parameters.  
 
 
References 
 
Borra S., Di Ciaccio A. (1996). Analisi fattoriale multilevel:potenzialità di analisi 

nell’ambito della valutazione scolastica. In Nuove metodologie per l’analisi di 
dati a tre indici; Workshop held on November, 19th, 1996, in Dipartimento di 
Statistica, Probabilità e Statistiche Applicate; Roma, 20-21. 



THE ANALYSIS OF AUXOLOGICAL DATA BY MEANS OF NONLINEAR MULTIVARIATE 

GROWTH CURVES 
(coautore.A.M. Mineo) in corso di pubblicazione sugli atti del convegno del gruppo italiano 
della IFCS, Pescara luglio 1997; Springer-Verlag edit. 
 

Riproduzione da file per agevolare la consultazione via web: non è 
esattamente rispondente all'originale. 

 

Chiodi, M. (1989). The clustering of longitudinal multivariate data when time series 
are short. In: Multiway data analysis. Editors: Coppi,R. and Bolasco,S. Elsevier 
Science Publisher B.V. (North-Holland ). 

Diggle, P.J. (1988). An Approach to the Analysis of Repeated Measurements. 
Biometrics, 44, 959-971. 

Escoufier, Y. (1987). Three-mode data analysis: the STATIS method, Methods for 
Multidimansional Data Analysis, ECAS, 259-272. 

Goldstein H., Healy M.J.R., Rasbash J. (1994). Multilevel time series models with 
applications to repeated measures data. Statistics in Medicine, 13, 1643-1655. 

Harshman R.A. (1970). Foundations of the PARAFAC procedure: Models and 
methods for an “explanatory” multi-mode factor analysis, UCLA Working Papers 
in Phonetics, 16, 1-84. 

Jolicoeur, P., Pernin, M.O, Pontier, J. (1988). A Lifetime Asympotic Growth Curve 
for Human Height. Biometrics, 44, 995-1003. 

Jones, R.H. and Ackerson, L.M. (1990). Serial correlation in unequally spaced 
longitudinal data. Biometrika, 77, 4, 721-731. 

Kroonenberg, P.M. (1992). Three-mode component model: a survey of the 
literature, Statistica Applicata, 4, 4, 619-633. 

Lundbye-Christensen, S. (1991). A Multivariate Growth Curve Model for 
Pregnancy. Biometrics, 47, 637-657. 

Milani S., Bossi A. (1988). Relazione tra modelli lineari classici per lo studio 
dell’accrescimento somatico, Atti della XXXIV Riunione Scientifica della Società 
Italiana di Statistica, Siena 27-30 Aprile 1988, 2, 2, 77-84. 

Mineo, A. (1987). Solution using clustering method. In Data analysis:The ins and 
outs of solving real problems. Editors: Janssen,J., Marcotorchino,F. and 
Proth,J.M.; Plenum Press, New York. 

Núñez-Antón, V., Woodworth, G.G. (1994). Analysis of longitudinal data with 
unequally spaced observations and time-dependent correlated errors. Biometrics, 
50, 445-456. 

Palmer, M.J., Phillips, B.F., Smith, G.T. (1991). Application of Nonlinear Models 
with Random Coefficients to Growth Data. Biometrics, 47, 623-635. 

Rao, C.R. (1965). The theory of least squares when the parameters are stochastic 
and its application to the analysis of growth curves. Biometrika, 52, 447-458. 

Rizzi, A., Vichi, M. (1995). Three-way data set analysis. In: Some Relations 
Between Matrices and Structures of Multidimensional Data Analysis, Editor: 
Rizzi, A., Consiglio Nazionale delle Ricerche; Giardini editori, Pisa, 93-166. 

Seber, G.A.F., Wild, C.J. (1989). Nonlinear regression. John Wiley, New York. 
Tanner, J. M. (1981). Auxologia dal feto all’uomo: la crescita fisica dal 

concepimento alla maturità. Ed. italiana a cura di L.Benso, UTET, Torino. 
Tucker, L.R. (1966). Some mathematical notes on three-mode factor analysis, 

Psychometrika, 31, 279-311. 
Von Bertalanffy, R. (1957). Quantitative laws in metabolism and growth. Quarterly 

Review of Biology, 32, 217-231. 


