
Simulation techniques in Statistics with R

Marcello Chiodi

marcello.chiodi@unipa.it http://dssm.unipa.it/chiodi

Dipartimento di Scienze Economiche Aziendali e Statistiche (SEAS)
Università di Palermo

Stuttgard, February 2019

Marcello Chiodi (Università di Palermo) Simulation techniques Stuttgard 2019 1 / 199

Outline I

1 Introduction
Why Monte Carlo?
Monte Carlo integration
Monte Carlo overcomes the curse of dimensionality
Monte Carlo Integration and simulated sampling distributions
Variance reduction techniques

Classical Monte Carlo integration
Importance sampling
Control variables

Monte Carlo: strength and weakness

2 Generating pseudo random numbers
Generating random numbers from uniform distributions
Linear congruential generators

Repeating a sequence

Notes on nonlinear congruential generators and other generators
Testing for randomness

Marcello Chiodi (Università di Palermo) Simulation techniques Stuttgard 2019 2 / 199

Outline II

3 Pseudorandom number generation from univariate distributions
Inversion of the distribution function
Techniques based on transformations of random variables
Acceptance-rejection method
The ratio-of-uniforms method
Examples of generating pseudorandom observations for some known
random variables

4 Generation of pseudorandom numbers vectors
Introduction
Generation of pseudorandom vectors from a multivariate normal
distribution
Mixtures of multivariate normal distributions
Generation of contingency tables
The system of R for the management of probability distributions

5 Simulation Techniques in Statistics

Marcello Chiodi (Università di Palermo) Simulation techniques Stuttgard 2019 3 / 199

Outline III

Overview
Simulated sampling distributions

A simulation with m = 100000

Comment on the example
Outline of algorithm of simulation of sampling distributions
Simulation of regression models

6 Theory behind simulation studies
Standard errors of simulation studies
Simulated significance levels
Power of a test
Advantages and disadvantages of simulation techniques
Disadvantages of simulation techniques
Mixtures of distributions

Multivariate Distributions: examples

7 Other topics

8 References

Marcello Chiodi (Università di Palermo) Simulation techniques Stuttgard 2019 4 / 199

Introduction

The simulation techniques are now widely used in statistics, also in
methodological papers.

Monte Carlo methods, although not elegant from a formal point of
view, represent an effective and convenient way to obtain approximate
results by simply using the brute force of a computer for one of its
basic tasks:

Monte Carlo Method and computer tasks

Repeating calculations many times!

In many situations they are, at least currently, the only way, or at
least the more convenient, to study the small-sample behavior of
estimators or test whose exact distributions is unknown (or that we
do not know how to derive)

Marcello Chiodi (Università di Palermo) Simulation techniques Stuttgard 2019 5 / 199

Introduction

They are also used to evaluate empirically the goodness of an
analytical asymptotic approximation with respect to n;

On the other hand, the impact of methods like Monte Carlo or other
simulation techniques in statistics well consolidated: for example the
development of methods for Monte Carlo Markov chains, such as the
Gibbs sampler, etc..

numerical integration techniques;

optimization techniques (simulated annealing);

simulation techniques provide a significant educational support for
students to show sampling distributions or, rather, a sample extracted
from a simulated sampling distribution, and to provide examples of
complex analytical results.

example

exec Simul2000

Marcello Chiodi (Università di Palermo) Simulation techniques Stuttgard 2019 6 / 199

Uses of Simulations in Statistics

Some example

Approximating a sampling distribution

Approximating a significance level

Approximating an integral

Overcome the Curse of dimensionality

We can reduce the variance of the results

The method is slow

It is an empirical approach: it is difficult to generalize results

Marcello Chiodi (Università di Palermo) Simulation techniques Stuttgard 2019 7 / 199

The birth of simulation techniques

The idea was to experiment thousands of these possibilities and,
at each stage, select at random, in other words, using a random
number with a proper chance, you might investigate the outcome
of certain types of events, so as to follow, so to speak, a linear
succession, instead of considering all the ramifications. After ex-
amining the possible trends in only a few thousand cases, it would
provide a good sample and an approximate answer to the problem.
All you need to know is the average of the trends of new samples.
Such a procedure was particularly suitable to be performed auto-
matically and the birth of modern computers it was a consequence
of that fact.

(Ulam, 1976)

Marcello Chiodi (Università di Palermo) Simulation techniques Stuttgard 2019 8 / 199

Simulation and computers

Simulation techniques, as other fields in statistics, are intimately
related to the automatic calculation and computers: in fact, the first
implementations of the Monte Carlo method had to await the birth of
an automatic machine, basically by Von Neumann:

indeed, for some scientists, including Ulam and Von Neumann, just
the ability to implement quickly the repetitive calculations necessary
to conduct the simulations was an incentive for the actual
construction of an automatic machine for calculation.

The occasion was the multiplication molecular calculations necessary
in Los Alamos laboratory during the Manhattan Project to build the
first atomic bomb!

Marcello Chiodi (Università di Palermo) Simulation techniques Stuttgard 2019 9 / 199

Why “Monte Carlo”?

Simulate (in the sense of mimicking more than in that of pretend) a
process is to experience the same process under similar conditions a
large number of times, each time by detecting the final state of the
system. If the system state is expressed by numerical variables, an
initial summary of the simulation is given, for example, the arithmetic
average of the states and their variance.

This technique (not by chance!) has been given the name of Monte
Carlo method (Metropolis, Ulam, 1949), which originally was the
code name given for reasons of secrecy

The name was not so much associated with gambling, but rather to
the fact that in a gambling house, for example at the roulette table,
the same random experiment is repeated under similar conditions a
large number of times.

Marcello Chiodi (Università di Palermo) Simulation techniques Stuttgard 2019 11 / 199

Historical references: Student’s t

Gosset (alias Student) used an empirical method similar to Monte
Carlo method to study the distribution of standardized averages by
means of 750 samples of width 4, obtained from an empirical
distribution of 3000 real measurements approximately normal.

See Stigler (1991) and Piccolo(1998) for historical quotes on
simulations in statistics.

Marcello Chiodi (Università di Palermo) Simulation techniques Stuttgard 2019 12 / 199

Simulations of deterministic models

It may seem a contradiction the application of simulation techniques
to deterministic problems, but ...

we want to calculate the value of a definite integral on a closed
interval [a, b] of a function h(x) restricted to be always positive,
which takes in [a, b] maximum H;

suppose you obviously can not get
the exact result, or you do not
want to use approximations based
on suitable quadrature formulas.

Marcello Chiodi (Università di Palermo) Simulation techniques Stuttgard 2019 13 / 199

Points at random: hit-or-miss

In the figure we apply an elementary simulation technique with m = 1000.
We extracted m pairs of independent random numbers (Xi ,Yi) with Xi

uniformly distributed in [a, b] and Yi uniformly distributed in [0,H];
ie we throw 1000 points in the rectangle that contains h(x).

Monte Carlo technique Hit
or Miss

The estimate of the integral is
given by the ratio between
points in the curve and the
total points thrown multiplied
by the area of the rectangular
area basic technique

Marcello Chiodi (Università di Palermo) Simulation techniques Stuttgard 2019 14 / 199

Monte Carlo hit-or-miss

Let v the number of points that falls under h(x), i.e. where one has:
Yi < h(Xi); the estimate of the integral is given by:

Î = H(b−a)v
m

Let p̂ = v/m, a confidence interval to 95 % for I is given by:

[H(b − a)] (p̂ ∓ 1.96

√
p̂(1− p̂)

m
)

example

codiceIntegr1.R

Marcello Chiodi (Università di Palermo) Simulation techniques Stuttgard 2019 16 / 199

Increase the precision

Now apply again the same elementary simulation technique but
throwing 100,000 points in the rectangle that contains h(x).

We obtain a confidence interval on average 10 times shorter
(√

m1
m2

)

Marcello Chiodi (Università di Palermo) Simulation techniques Stuttgard 2019 17 / 199

R code used for integration hit-or-miss

1 # numerical integration

2 xvec = seq(0,1,by =0.001)

3 h = function(x)log(1+exp(x^2))*x/(.1+x^2)

4 polx =c(0,xvec ,1)

5 poly =c(0,h(xvec) ,0)

6 plot(polx ,poly ,col="black",type="l",xlim=c(0,1),main="Function to

integrate",xaxs="i",yaxs="i",xlab="x",ylab="h(x)")

7 polygon(polx ,poly ,col="red",xlim=c(0,1),xaxs="i")

8 H =max(poly)

9 m =1000

10 x =runif(m)

11 y =runif(m, min=0,max=H)

12 plot(polx ,poly ,col="black",type="l",xlim=c(0,1),xaxs="i",yaxs="i",

main="Montecarlo hit -or-miss m=1000",xlab="x",ylab="h(x)")

13 points(x,y,col= (y<h(x))*1+1)

14 x11()

15 m=100000

16 x=runif(m)

17 y=runif(m, min=0,max=H)

18 plot(polx ,poly ,col="black",type="l",xlim=c(0,1),xaxs="i",yaxs="i",

main="Montecarlo hit -or-miss m=100 ,000",xlab="x",ylab="h(x)")

19 points(x,y,col= (y<h(x))*1+1,pch=".")

codiceIntegr1.RMarcello Chiodi (Università di Palermo) Simulation techniques Stuttgard 2019 18 / 199

Integration of a 2d function

Marcello Chiodi (Università di Palermo) Simulation techniques Stuttgard 2019 19 / 199

Monte Carlo overcomes the curse of dimensionality

i

ntegrazione3d.mpeg

Think again to the example described above: if we adopt a Monte
Carlo type technique for multiple integrals, the standard error of the
estimate is always the same, and depends only on the number of
points used!

Monte Carlo error estimate

With techniques like Monte Carlo, based on m points randomly chosen,
the standard error of the estimate is generally of order 1√

m
, regardless of

the number of dimensions of the function to integrate. This fact overcome
the curse of dimensionality.

Marcello Chiodi (Università di Palermo) Simulation techniques Stuttgard 2019 21 / 199

Integration and Monte Carlo sampling distributions

If we reflect carefully, we can see many similarities with the
approximation to a sampling distribution of an estimator.

In fact, the mathematical expectation of an estimator
T = T (x1, . . . , xn) (where X has density distribution f (·)) is given by:

E (T) =

∫
. . .

∫
<n

t(x1, . . . , xn)f (x1, . . . , xn)dx1, . . . , dxn

so that the problem reduces to that of the calculation, by simulation,
of an integral.

Marcello Chiodi (Università di Palermo) Simulation techniques Stuttgard 2019 23 / 199

Monte Carlo integration

Although the standard error of estimate is generally of the order of
1√
m

, the hit-or-miss technique is not very efficient, but we will not

explore this aspect now.

Remind only that if we want to estimate an integral

I =

∫ b

a
h(x)dx

a better estimate is given by:

Î = (b − a)

∑m
i=1 h(Xi)

m

where the Xi are uniformly distributed on [a, b]

Marcello Chiodi (Università di Palermo) Simulation techniques Stuttgard 2019 25 / 199

Importance sampling

Rewrite the integral in this way, putting g(x) = h(x)
f (x)

I =

∫ b

a
h(x)dx =

∫ b

a
g(x)f (x)dx = Ef (g(X)) = Ef

[
h(X)

f (X)

]
Now I has been espressed as the expected value of h(X)

f (X) with X a r.v.

with density f (x)!!!

We will estimate the integral drawing a sample of size m of
independent random numbers Xi (from the distribution of density
f (x)), with sample mean:

Îm =

∑m
i=1

h(Xi)
f (Xi)

m
=

∑m
i=1 g(Xi)

m
since Îm → I

Since the variance of the estimate depends on the variance of g(X),
we will have good results if f (x) has a shape similar to that of h(x)

Marcello Chiodi (Università di Palermo) Simulation techniques Stuttgard 2019 26 / 199

Control variables

A very simple and standard technique of variance reduction is the
control variables approach.

Suppose we want to estimate an integral which is the expected value
of some variable Y , whose distribution is unknown, but for which we
can obtain pseudo random values Yi .

For example if Y is a function of an n-dimensional random vector X
(Y = g(x)),and possibly Y is an estimator of some parameter θ.

E [Y] is usually estimated by:M(Y) =
1

m

m∑
i=1

Yi

Marcello Chiodi (Università di Palermo) Simulation techniques Stuttgard 2019 27 / 199

Control variables

If for each Yi we can compute Zi determination of a variable Z , of
known expected value E [Z], and correlated with Y , we can estimate
E [Y] with a regression type estimator, with a reduction of variance:

Ê (Y) = M(Y) + b[M(Z)− E [Z]] b =
Cov(Y ,Z)

V [Z]

The reduction of variance is given by r 2
YZ

For example Y and Z could be two estimator of the same parameter:
we know the first moments of Z but not of Y , and reasonably the
two estimators are correlated.

Marcello Chiodi (Università di Palermo) Simulation techniques Stuttgard 2019 28 / 199

Monte Carlo: strength and weakness

From the previous simple examples we can see the main strength and the
main weakness of Monte Carlo method:

Monte Carlo strength

The (expected) error of the estimate depends on the number of
generated samples, m (generally it is of order 1√

m
)

The (expected) error does not depend on the number of dimensions
of the function to integrate (or on the sample size on which we
compute Tn).

Monte Carlo weakness

The (expected) error of the estimate decreases, as the the number of
generated samples m increases, very slowly generally at a rate of 1√

m

For example, if we want to gain one more decimal digit of precision,
we should multiply m by 100!

Marcello Chiodi (Università di Palermo) Simulation techniques Stuttgard 2019 30 / 199

Generate uniform pseudo-random numbers

Pseudo random numbers

From above examples, it is obvious that we must have a quick method to
produce a large amount of random numbers, possibly through a computer
and not through a real tossing of coins....

Pseudo random numbers

As we will see later, the basic problem is to get sequences of random
numbers from a uniform distribution, because the generation of random
numbers from any other distribution depends on it

Marcello Chiodi (Università di Palermo) Simulation techniques Stuttgard 2019 32 / 199

Generate uniform pseudo-random numbers

Pseudo random numbers

Anyone who considers arithmetical methods of producing ran-
dom digits is, of course, in a state of sin.

(Von Neumann, 1951, cit. by Knuth, 1981, p.1)

The random numbers generated by special algorithms are called
pseudo-random numbers: it is not conceivable for us to generate
numbers really random by an automatic algorithm.

Indeed, the idea of being able to use the algorithms (i.e. an
automatic processes with fixed rules) to simulate random mechanisms
seems at first sight a contradiction.

Marcello Chiodi (Università di Palermo) Simulation techniques Stuttgard 2019 33 / 199

Generate pseudo-random numbers

This is possible because the aim of the generation of pseudo-random
numbers is to obtain, by means of algorithms, sequences of numbers
that are certainly not physically random, because obtained by
analytical procedures, but that resemble in many ways to really
random sequences of numbers;

for example, their empirical distribution has characteristics that do
not differ significantly from those of the corresponding theoretical
distribution.

Technically, we use algorithms that produce chaotic sequences, i.e.
appropriate sequences that behave similarly to real random sequences.

Marcello Chiodi (Università di Palermo) Simulation techniques Stuttgard 2019 34 / 199

Linear congruential generators

The techniques for the generation of pseudo-random numbers from a
uniform distribution are based on specific algorithms, such as the linear
congruential algorithm, rather than a mechanical or physical device, hard
to implement on a computer.

ai = (λai−1 + b) mod c

Ui = ai/c

with λ, b, c , a0 integer numbers.

We have:

λ (multiplier) 0 < λ < c

b (increment) 0 ≤ b < c

c (modulus) c > 0

a0 (seed or start value) 0 ≤ a0 < c

Marcello Chiodi (Università di Palermo) Simulation techniques Stuttgard 2019 36 / 199

Examples of linear congruential generators

i ai Ui i ai Ui

0 1 0,0625 9 4 0,2500

1 12 0,7500 10 11 0,6875

2 3 0,1875 11 14 0,8750

3 6 0,3750 12 13 0,8125

4 5 0,3125 13 8 0,5000

5 0 0,0000 14 15 0,9375

6 7 0,4375 15 2 0,1250

7 10 0,6250 16 1 0,0625

8 9 0,5625 17 12 0,7500

Sequence of numbers obtained with λ = 5, b = 7, c = 16, a0 = 1
(sequence with maximum length cycle)

Marcello Chiodi (Università di Palermo) Simulation techniques Stuttgard 2019 37 / 199

Examples of linear congruential generators

i ai Ui i ai Ui

0 1 0,0625 5 11 0,6875

1 11 0,6875 6 9 0,5625

2 9 0,5625 7 3 0,1875

3 3 0,1875 8 1 0,0625

4 1 0,0625 9 11 0,6875

Sequence of numbers obtained with λ = 11, b = 0, c = 16, a0 = 1
(sequence with length cycle 4)

Marcello Chiodi (Università di Palermo) Simulation techniques Stuttgard 2019 38 / 199

Examples of linear congruential generators

i ai Ui i ai Ui

0 1 0,0010 4 835 0,8154

1 27 0,0264 5 323 0,3154

2 547 0,5342 6 323 0,3154

3 707 0,6904 7 323 0,3154

Sequence of numbers obtained with λ = 20, b = 7, c = 1024, a0 = 1
after a5 all the numbers are equal to 323

Marcello Chiodi (Università di Palermo) Simulation techniques Stuttgard 2019 39 / 199

Examples of linear congruential generators

i ai Ui i ai Ui

0 1 0,0000 8 25673 0,7835

1 942 0,0287 9 4918 0,1501

2 6755 0,2061 10 5931 0,1810

3 15712 0,4795 11 14696 0,4485

4 22501 0,6867 12 13613 0,4154

5 5938 0,1812 13 1978 0,0604

6 14983 0,4572 14 16463 0,5024

7 25380 0,7745 15 20524 0,6263

Sequence of numbers obtained with λ = 41, b = 901, c = 32768, a0 = 1
(sequence with maximum length cycle)

Marcello Chiodi (Università di Palermo) Simulation techniques Stuttgard 2019 40 / 199

Properties of linear congruential generators

If b = 0 and c is a prime number we have a sequence with maximum
length cycle c − 1 if and only if λ is a generator modulus c, i.e. if:
c − 1 is the smallest value of n satisfying λn mod c = 1

The following theorem is computationally more useful:
if c is a prime number, then λ is a generator modulus c if and only if

1 λ and c are relatively prime numbers;

2 λ(c−1)/p mod c 6= 1 for each prime factor p of c − 1.

Marcello Chiodi (Università di Palermo) Simulation techniques Stuttgard 2019 41 / 199

Properties of linear congruential generators

Sufficient conditions for 2 is a generator modulus c (prime number) are:

1 c−1
2 is prime;

2 c mod 8 = 3.

Starting from g , a generator modulus c, we can find other generators by
relationship

λ mod c = ga

with a and c − 1 primes among them.

Marcello Chiodi (Università di Palermo) Simulation techniques Stuttgard 2019 42 / 199

Generation of random numbers from uniform distribution

In general, algorithms provide integer values ai , with ai < n, on the
basis of k previous values of ai , according to the generic recursive
scheme:

ai = g(ai−1, ai−2 . . . , ai−k).

The type of sequence is determined by the function g(·), which can
be linear or nonlinear.

The elements of the sequence are then standardized: Ui = ai
n

Marcello Chiodi (Università di Palermo) Simulation techniques Stuttgard 2019 43 / 199

Choice of λ, b, c and a0

We search for a sequence that:

has a long cycle;

is founded on a high modulus c ;

is not too sensitive to the choice of a0

A sequence has maximum length c if and only if, λ, b > 0 and c meet the
following conditions:

1 b and c have no common divisors besides the unit;

2 λ is a multiple of each prime factor of c ;

3 λ is a multiple of 4 if c is a multiple of 4.

Marcello Chiodi (Università di Palermo) Simulation techniques Stuttgard 2019 44 / 199

Some of the values of λ and c more used in literature
(b = 0)

λ c

75 = 16.807 231 − 1 = 2.147.483.647
742.938.285 231-1
950.706.376 231-1

1.343.714.438 231-1
1.226.874.159 231-1

62.089.911 231-1
397.204.094 231-1

1313 = 302.875.106.592.253 259-1
8192 67.101.323

8192 67.099.547

32768 16.775.723

Marcello Chiodi (Università di Palermo) Simulation techniques Stuttgard 2019 45 / 199

Other properties of linear congruential generators

If b = 0 then
ai+k = λkai mod c

If b = 0, then the autocorrelation ρ1(U) of the entire sequence of
length n is included between the range

ρ1(U) ∈
[

1

λ
± λ

c

]
with the autocorrelation of lag 1 defined by:

ρ1(U) =
n−1∑
i=1

[Ui −M(U)][Ui+1 −M(U)]/Var(U)

Marcello Chiodi (Università di Palermo) Simulation techniques Stuttgard 2019 46 / 199

Other properties of linear congruential generators

If U1 e U2 are two independent standard uniform r.v., then
frac(U1 + U2) is a standard uniform r.v.;

If U1 and U2 are pseudo-random numbers derived from congruential
generators with full period and with modulus c1 e c2, respectively,
then U = frac(U1 + U2) has period c1 · c2 (c1 and c2 should be prime
among them). Usually a combination of multiple generators is used in
practice.

Linear congruential generators have the following behavior (code
./routine/fig_cas_alg_congr.r and
./routine/fig_cas_alg_congr2.r).

Marcello Chiodi (Università di Palermo) Simulation techniques Stuttgard 2019 47 / 199

./routine/fig_cas_alg_congr.r
./routine/fig_cas_alg_congr2.r

Key features required in a linear congruential generator

According to Ripley (1990), the ideal properties of a good pseudo-random
number generator are:

1 a very good approximation to a uniform distribution;

2 very close to independent output in a moderate number of
dimensions;

3 a very long period;

4 repeatability from a simply specified starting point, but if the starting
point is not specified the sequence should not be predictable.

Marcello Chiodi (Università di Palermo) Simulation techniques Stuttgard 2019 48 / 199

Main linear congruential generators recommended

Noting that in general no algorithm for generating pseudorandom numbers
is the best one for all applications, according to Wichmann and Hill (2006)
linear congruential generators to be used are:

Name Period Lines of Dimension Relative
code in bytes times

ISAAC (Jenkins) ≥ 240 97 1024 1, 0
AES (NIST, 2001) unknown 85 16 2, 1
Mersenne twister
(Matsumoto and Nishimura, 1998) 219937 − 1 48 2500 2, 3
MRG32k3a (L’Ecuyer, 1999) ≈ 2191 31 48 2, 7
Knuth, TAOCP (Knuth, 1981) ≈ 2129 90 404 4, 9
CLCG4 (L’Ecuyer and Andres, 1997) ≈ 2121 34 16 9, 2
Wichmann e Hill - 4 cycles, 2006 ≈ 2120 26 16 10, 0
MRG63k3a (L’Ecuyer, 1999) ≈ 2377 40 48 14, 3

Marcello Chiodi (Università di Palermo) Simulation techniques Stuttgard 2019 49 / 199

Linear congruential generators used in R

Pseudorandom number generators available in R are the following (the
default generator is “Mersenne-Twister”):

Wichmann-Hill: has a period of length 6.9536e + 12.

Marsaglia-Multicarry: has a period of length greater then 260 and
has passed all tests, according to Marsaglia.

Super-Duper: has a period of about 4.6 ∗ 1018.

Mersenne-Twister: has a period of length 219937 − 1.

Knuth-TAOCP-2002: has a period of about 2129.

Knuth-TAOCP: a previous version.

user-supplied: uses a user-supplied generator.

Marcello Chiodi (Università di Palermo) Simulation techniques Stuttgard 2019 50 / 199

The system of random number generators of R

1 .Random.seed <- c(rng.kind , n1, n2, \dots)

2 RNGkind(kind = NULL , normal.kind = NULL)

3 RNGversion(vstr)

4 set.seed(seed , kind = NULL , normal.kind = NULL)

5 # or:

6 save.seed <-.Random.seed

7 set.seed(save.seed , kind = NULL , normal.kind = NULL)

codiceSeed1.R

The default kind is ”Mersenne-Twister”: (Matsumoto and
Nishimura, 1998).

It is a random number generator, currently one of the best, if not the
best (also used in online games).

It has a period 219937 − 1 (Mersenne prime number)

The initial seed is a set of 624 integers of 32 bits,

Marcello Chiodi (Università di Palermo) Simulation techniques Stuttgard 2019 51 / 199

Generating the same sequence

Since it uses a recursive formula, starting from the same sequence of k
values, we obtain again the same sequence of uniform numbers

1 a<-.Random.seed

2 x1=runif (1000)

3 .Random.seed <-a

4 x2=runif (1000)

5 x1-x2

6 # or

7 a<-.Random.seed

8 set.seed(a)

9 x1=runif (1000)

10 set.seed(a)

11 x2=runif (1000)

12 x1 -x2

13 #output

14 # [1] 0

0 0 0 0 0 0

15 # ...

16 # [1000] 0

codiceSeed2.R

Marcello Chiodi (Università di Palermo) Simulation techniques Stuttgard 2019 52 / 199

Pseudo-random numbers

E.g. an algorithm for generating random numbers integers between 1
and 6 is satisfactory if, given a sequence of m integers between 1 and
6, it is difficult or even impossible to determine if it has been
generated by an algorithm or by m true independent tosses of a
balanced dice

1 23433661213245126156216324422541513424532144346651
2 54443162343665452263452416444336546456133221556333
3 61525352442212136156341544324365235163633555155221
4 65522622244141624521435433263412614656553352425261
5 15263542534251425366635362433222132326326464365432
6 45354256422136366662335112233324453464613112324342

(1) and (3) from a computer;(2) and (6) throwing real dices; (4)
transforming the (3): 7-(3) from right to left (5) pounding on the keys

Marcello Chiodi (Università di Palermo) Simulation techniques Stuttgard 2019 53 / 199

Pseudo-random numbers

A good algorithm

What matters is whether we, operationally, would know whether a certain
result comes from an analytical procedure or by a true random experiment.
If we can understand it, then that is not a good algorithm!

Can we understand how this sequence was derived? was it derived
from a true random experiment?

0,275 0,301 0,548 0,592 0,208 0,161 0,262 0,793 0,754 0,179 0,083
0,591 0,619 0,574 0,287 0,000 0,083 0,051 0,167 0,190 0,853 0,128
0,264 0,583 0,542 0,413 0,498 0,764 0,377 0,057 0,165 0,908 0,203
0,018 0,642 0,042 0,627 0,484 0,931 0,619 0,304 0,411 0,586 0,908
0,447 0,402 0,262 0,797 0,476 0,264

Marcello Chiodi (Università di Palermo) Simulation techniques Stuttgard 2019 54 / 199

Sequences of different lengths

Of course, longer simulated sequences will have a distribution closer to the
theoretical one, with error of order 1√

m

Marcello Chiodi (Università di Palermo) Simulation techniques Stuttgard 2019 55 / 199

R code

1 univsimul <-function(nsamples =1000 , nparz=nsamples , n=1,

2 modello="normal",parm=c(0,1),

3 nclass = 50,

4 nscreen =c(1,1),

5 newscreen =TRUE ,

6 iscreen =1,

7 singlesample= FALSE ,

8 teoplot = TRUE ,

9 tpause = 0.01,

10 colorhist = "yellow",

11 colorborder = "blue",

12 colorteo = "red",

13 colorbg = "white",

14 dimpoint = 0.8)

codiceSimul1.R

Marcello Chiodi (Università di Palermo) Simulation techniques Stuttgard 2019 56 / 199

Nonlinear congruential generators

Linear congruential generators have some undesirable features, as seen
above, even if remain the most popular tool for generating pseudorandom
numbers.

Some nonlinear congruential generators have been developed but with a
greater computational cost.

It is to be observed that in relative terms diminishes the influence of the
time taken for the calculation of Ui in relation to overall time required by
a statistical simulation (Ripley, 1983).

Marcello Chiodi (Università di Palermo) Simulation techniques Stuttgard 2019 58 / 199

Inversive congruential generators

An important class of nonlinear generators introduced by
Eichenauer-Hermann (1992) are based on the concept of multiplicative
inverse modulo c .

Let Zn be the set of the integers less than n, for any integer n. Let p ≥ 5
be a prime number and z an integer; we defina multiplicative inverse of z
modulo p the unique element z of Zp such that:

z · z mod p ≡ 1

An inverse congruential sequence of elements of Zp is defined as

ai ≡ (λ ai−1 + b) mod p, Ui = ai/p

with λ 6= 0, b, a0 integer numbers and p prime number.

Marcello Chiodi (Università di Palermo) Simulation techniques Stuttgard 2019 59 / 199

Feedback shift register (Tausworthe, 1965)

The foundation is given by the recursive formula:

ai =
k∑

j=1

λjai−j mod c

with λj not all zero coefficients, ai not all zero starting values, c usually a
prime number (the period of the sequence could not exceed ck − 1).

In particular, if c = 2, we get a sequence of binary digits (0.1); combining
then groups of s binary digits ai , we get fractional parts of numbers Ui

between 0 and 1 and represented in binary notation.

Marcello Chiodi (Università di Palermo) Simulation techniques Stuttgard 2019 60 / 199

Feedback shift register (Tausworthe, 1965)

The advantages of this technique are basically two:

We do not need to standardize to have the interval [0,1), because we
get the binary digits to the right of the decimal that compose the
pseudorandom number Ui ;

We can use the same generator to get numbers Ui with the desired
accuracy: simply by increasing the number s of binary digits.

Marcello Chiodi (Università di Palermo) Simulation techniques Stuttgard 2019 61 / 199

Other techniques for generating random digits

Use of the digits of π (Dodge, 1996);

Tables of random numbers;

...

Drawbacks:

Regarding the use of π is very costly in terms of computing time;

We can think to store a large number of digits (a few billion) on a
mass storage device, but is not a practical solution; same problem for
tables of random numbers;

About the tables of random numbers, it has the disadvantage that we
could always use the same.

Marcello Chiodi (Università di Palermo) Simulation techniques Stuttgard 2019 62 / 199

Testing for randomness

To verify the goodness of pseudorandom numbers that are generated, we
can check the following properties:

Matching between empirical and theoretical moments: for example,
for a standard uniform distribution we have

µ = 0.5, σ2 = 1/12 = 0.083, β1 = 0, β2 = 1.8

or use the following tests:

Test X 2 of goodness of fit;

Kolmogorov-Smirnov test based on the test statistics

Dmax = max |Fi − i/m|

Marcello Chiodi (Università di Palermo) Simulation techniques Stuttgard 2019 64 / 199

Testing for randomness

Test X 2 on pairs (Ui ,Ui+1) to verify that are uniformly distributed in
a square with unitary surface;

Generalization of the previous test X 2 for n-tuples of pseudorandom
numbers;

Test X 2 on pairs (Ui ,Ui+r) to verify that there are no undesiderable
autocorrelations for lag above the first (in this case the test statistic
X 2 should be amended accordingly).

Marcello Chiodi (Università di Palermo) Simulation techniques Stuttgard 2019 65 / 199

Testing for randomness

For uniform pseudorandom number generators, battery of statistical tests
exists that are publicly available. The most important are

DIEHARD (Marsaglia, 1985), that can be found at the URL
http://www.stat.fsu.edu/pub/diehard/;

TestU01 (L’Ecuyer and Simard, 2005), that can be found at the URL
http://www.iro.umontreal.ca/~simardr/.

The TestU01 battery is more “stringent” of the DIEHARD battery.

Marcello Chiodi (Università di Palermo) Simulation techniques Stuttgard 2019 66 / 199

http://www.stat.fsu.edu/pub/diehard/
http://www.iro.umontreal.ca/~simardr/

Inversion of the distribution function

Let X be a r.v. with distribution function F (.).

Let G (.) be the inverse of the distribution function (this function always
exists due to the monotonicity of F (.)), i.e.

G (F (x)) = x

Considering a generic event X ≤ y with probability F (y), this is equivalent
to the event F (X) ≤ F (y), and then we have:

Prob{X ≤ y} = Prob{F (X) ≤ F (y)} = F (y)

so, putting U = F (X), U is uniformly distributed in [0, 1].

Marcello Chiodi (Università di Palermo) Simulation techniques Stuttgard 2019 68 / 199

Inversion of the distribution function

Conversely, if we consider a standard uniform r.v. U, we have:

Prob{U ≤ F (x)} = F (x)

so by applying the function G (.) we have:

Prob{G (U) ≤ G (F (x))} = Prob{G (U) ≤ x} = F (x)

that is, G (U) is distributed as X .

Therefore, we can generate U from a standard uniform distribution and
then calculate X = G (U) which will be a random number from a
distribution with distribution function F (.).

Marcello Chiodi (Università di Palermo) Simulation techniques Stuttgard 2019 69 / 199

Use of inversion of the distribution function (discrete case)

Marcello Chiodi (Università di Palermo) Simulation techniques Stuttgard 2019 70 / 199

Generation from any distributions

The method is applicable to any random variable, continuous or
discrete.

Obviously the answer is given by an equation usually not in explicit
form (and which contains also an integral)

Given U, solve with respect to X:∫ X

−∞
f (x) dx = U

However, this method is not adaptable to simulate the extraction of
pseudo-random vectors from multivariate distributions

There are however several methods for generating random numbers
from univariate and multivariate distributions

Marcello Chiodi (Università di Palermo) Simulation techniques Stuttgard 2019 71 / 199

Discrete distribution with finite number of values

xi P(X = xi) = pi F (xi)
0 0,1 0,1

1 0,7 0,8

2 0,2 1,0

To generate a pseudorandom determination of X we proceed as follows:

1 we generate a random number U from a standard uniform
distribution.

2 if U ≤ 0, 1 we put X = 0 else

3 if U ≤ 0, 8 we put X = 1 else we put X = 2

Marcello Chiodi (Università di Palermo) Simulation techniques Stuttgard 2019 72 / 199

Discrete distribution with finite number of values

xi P(xi) Hi =
∑i

j=1 P(xj)
1 0,7 0,7

2 0,2 0,9

0 0,1 1,0

The above algorithm is modified as follows:

1 we generate a random number U from a standard uniform
distribution.

2 if U ≤ 0, 7 we put X = 1 else

3 if U ≤ 0, 9 we put X = 2 else we put X = 0

Marcello Chiodi (Università di Palermo) Simulation techniques Stuttgard 2019 73 / 199

Discrete distribution with finite number of values

Which of the two algorithms should be used?

Let C be the r.v. “number of comparisons to be made”. The expected
value of this r.v. is given by:

E (C) =
∑

ci P(C = ci)

Number of
comparisons ci

P(C = ci)
non ordered values of X

P(C = ci)
ordered values of X

1 0,1 0,7

2 0,9 0,3

E(C) 1.9 1.3

Marcello Chiodi (Università di Palermo) Simulation techniques Stuttgard 2019 74 / 199

Discrete distribution with finite number of values

Sorting the values is convenient only if we need to generate many
pseudorandom numbers from the same distribution;

We take time advantage for distributions with strong heterogeneity
between probabilities.

Marcello Chiodi (Università di Palermo) Simulation techniques Stuttgard 2019 75 / 199

Generation from any discrete distributions

Initialization

steps from a) to c) are required only for discrete r.v. with an infinite
number of values;

for discrete r.v. with a finite number k of values we can skip ahead to
step d).

a) set ε;

b) determine the smallest value of k for which 1− Fk ≤ ε;

c) put Fmax = Fk ;

d) compute pi (i = 1, 2, . . . , k);

e) sort the k probability pi in descending order and rearrange
consequently the xi by getting the two vectors x(i) and p(i);

f) set H0 = 0;

g) compute Hi = Hi−1 + p(i), (i = 1, 2, . . . , k) (Hk is equal to Fk);

Marcello Chiodi (Università di Palermo) Simulation techniques Stuttgard 2019 76 / 199

Generation from any discrete distributions

Body of the algorithm for generating a single number

h) generate U from a standard uniform distribution;

i) if U < 1− ε go on, otherwise go to step m);

j) set i = 1;

k) if U < Hi set X = xi and go to h) to compute another random
number; otherwise go on;

l) set i = i + 1 and go to k);

Tail of the distribution

m) set i = k + 1 and C = Fk ;

n) compute pi and set C = i + pi ;

o) if U < C set X = xi and go back to h) to get another random
number; otherwise go on;

p) set i = i + 1 and go back to n).

Marcello Chiodi (Università di Palermo) Simulation techniques Stuttgard 2019 77 / 199

Generation from an exponential distribution

The exponential r.v. has

f (x) = λe−λx ; F (x) = 1− e−λx

with λ > 0 and x ≥ 0.

Then, we have

U = 1− e−λX ⇒ e−λX = 1− U ⇒ X = − log(1− U)/λ

Since 1− U is distributed as U, we can consider the final relation:

X = − log(U)/λ

When λ = 1/2 the exponential distribution is a χ2(2) distribution.

Marcello Chiodi (Università di Palermo) Simulation techniques Stuttgard 2019 78 / 199

Homeworks

Generate from a Bernoulli distribution

Generate from a Geometric distribution (F (X) = 1− (1− p)x)

Marcello Chiodi (Università di Palermo) Simulation techniques Stuttgard 2019 79 / 199

Techniques based on transformations of random variables

Random number generation methods based on transformations of
random variables are based on known theorems of probability to get
the distribution function of random variables.

If we know that X = g(Y) and we know how to generate random
numbers from the distribution of Y to obtain a random number from
the distribution of X just generate a number y and then compute
x = g(y).

Marcello Chiodi (Università di Palermo) Simulation techniques Stuttgard 2019 81 / 199

Box-Muller (1958) transformation: normal distribution

Suppose we want to generate a random point P(XP ,YP) from a
standardized bivariate normal distribution.

We represent P polar coordinate system: P(ρP , θP); ρP (radial
coordinate) and θP (angular coordinate) are independent.

By definition we have
ρP = X 2

P + Y 2
P

and then ρP ∼ χ2(2).

In addition, we have θP ∼ U(0, 2π), since, for independent standardized
normal variables, the density of points along a circle with center at the
origin is constant.

Marcello Chiodi (Università di Palermo) Simulation techniques Stuttgard 2019 82 / 199

Box-Muller transformation: normal distribution

Marcello Chiodi (Università di Palermo) Simulation techniques Stuttgard 2019 83 / 199

Box-Muller transformation: normal distribution

We can then generate ρP and θP through the following relations:

ρP =
√
χ2(2) =

√
−2 log(U)

θP = 2πV

To get two random numbers XP e YP just use the following relations:

XP = ρP cos(θP) =
√
−2 log(U) cos(2πV)

YP = ρP sin(θP) =
√
−2 log(U) sin(2πV)

Marcello Chiodi (Università di Palermo) Simulation techniques Stuttgard 2019 84 / 199

Poisson distribution

We can take advantage of the connection between Poisson distribution
and the arrivals process regulated by an exponential distribution.

A Poisson distribution with parameter λ, with:

P(x) =
λxe−λ

x!
, x ≥ 0;λ > 0

gives the probability that per unit of time occur exactly x arrivals, in a
Poissonian arrivals process with independent increments, with

f (t) = λe−λt , t ≥ 0

the density function of the probability distribution of the waiting time t
between successive arrivals.

Marcello Chiodi (Università di Palermo) Simulation techniques Stuttgard 2019 85 / 199

Poisson distribution

Therefore, instead of simulating the numbers of arrivals X per unit of
time, we simulate independent arrival times Ti from an exponential
distribution, until we pass, as total time, one.

The event {X = x} is equivalent to the event{
x∑

i=1

Ti < 1 ≤
x+1∑
i=1

Ti

}

Then we generate the Ti from an exponential distribution with parameter
λ until we have:

1 ≤
x+1∑
i=1

Ti

and then we take x as a random number generated by a Poisson
distribution with parameter λ.

Marcello Chiodi (Università di Palermo) Simulation techniques Stuttgard 2019 86 / 199

Poisson distribution

For the implementation of the algorithm, we have

Ti = − log(Ui)/λ

and then

1 ≤
x+1∑
i=1

Ti = −
x+1∑
i=1

log(Ui)/λ

which yields

−λ ≥
x+1∑
i=1

log(Ui) ⇒ − λ ≥ log

(
x+1∏
i=1

Ui

)
⇒ e−λ ≥

x+1∏
i=1

Ui

Marcello Chiodi (Università di Palermo) Simulation techniques Stuttgard 2019 87 / 199

Algorithm for generating a Poisson number

Initialization

a) Compute L = e−λ;

Body of the algorithm

b) Set X = 0 and W = 1;

c) Generate U from a standard uniform distribution;

d) Set W = W · U;

e) If L < W , set X = X + 1 go back to step c),
else X is the number sought and go back to step b) for a new
generation.

Marcello Chiodi (Università di Palermo) Simulation techniques Stuttgard 2019 88 / 199

Acceptance-rejection method (Von Neumann, 1951)

Suppose we want to generate pseudorandom numbers from the density
distribution f (x) of a continuous random variable X defined in a limited
range [a, b], which takes on a maximum value of M.

If we get points uniformly distributed over the surface subtended by f (x),
we could generate abscissa X from the distribution with density function
X and ordinate Y uniformly distributed in [0, f (X)].

Conversely, given a point P(X ,Y) uniformly distibuted on the surface
subtended by f (x), its abscissa X follows the distribution with density
function f (x).

Marcello Chiodi (Università di Palermo) Simulation techniques Stuttgard 2019 90 / 199

Acceptance-rejection method (Von Neumann, 1951)

We may be able to get those points P(X ,Y) by generating them
uniformly in the rectangle bounded by two horizontal lines with ordinate 0
and M, and two vertical lines with abscissa a and b, conditionally to the
fact that Y ≤ f (x), i.e. that P is below f (x).
Simply generate X uniform in [a, b] and Y uniform in [0,M]. The
x-coordinates X of the points that have y-coordinates Y ≤ f (X) are
random numbers that we want.

Marcello Chiodi (Università di Palermo) Simulation techniques Stuttgard 2019 91 / 199

General case

Factorization of f (x):
f (x) = C r(x) g(x)

with

r(x) density function from which we know how to generate
pseudorandom numbers;

g(x) a function such that 0 < g(x) ≤ 1;

C ≥ 1 normalizing constant.

Marcello Chiodi (Università di Palermo) Simulation techniques Stuttgard 2019 92 / 199

General case

Setting h(x) = C r(x), we have g(x) = f (x)/h(x) and then h(x) is always
greater than f (x): h(x) is a dominating function of f (x).
We have also:

C =

∫ +∞

−∞
f (x)/g(x)dx =

∫ +∞

−∞
h(x)dx

with 1/C representing the method efficiency.
Marcello Chiodi (Università di Palermo) Simulation techniques Stuttgard 2019 93 / 199

Greedy algorithm

Initialization

a) determine a factorization: f (x) = Cr(x)g(x) = h(x)g(x);

Body of the algorithm

b) generate X from a distribution with density function r(x);

c) generate V , independent from X , from a standard uniform
distribution;

d) if we have V ≤ g(X) we accept X , else we reject X and we go back
to step b).

Marcello Chiodi (Università di Palermo) Simulation techniques Stuttgard 2019 94 / 199

Formal proof

We have to compute the probability that X , random variable with
distribution with density function r(x), takes on a value between x and
x + dx , conditionally to V ≤ g(x):

P {x ≤ X ≤ x + dx |V ≤ g(x)} =

= P {[x ≤ X ≤ x + dx] ∩ [V ≤ g(x)]} /P {V ≤ g(x)} =

∼=
r(x)g(x)dx∫ b
a r(x)g(x)dx

=
r(x)g(x)dx

1/C
= f (x)dx

Marcello Chiodi (Università di Palermo) Simulation techniques Stuttgard 2019 95 / 199

The squeeze principle

We have to find two functions b(x) and h(x) such that for every x we
have:

b(x) ≤ f (x) ≤ h(x) con h(x) = C r(x)

Thus, we have to divide step d) of the previous algorithm in two steps,
making a so called pretest

V ≤ b(x)/h(x)

that if is verified means automatically the acceptation of x , since:

V ≤ b(x)/h(x) ≤ f (x)/h(x)

Marcello Chiodi (Università di Palermo) Simulation techniques Stuttgard 2019 96 / 199

Greedy squeezing algorithm

Initialization

a) determine a factorization: f (x) = Cr(x)g(x) = h(x)g(x) and find a
function b(x) ≤ f (x);

Body of the algorithm

b) generate X from a distribution with density function r(x);

c) generate V , independent from X , from a standard uniform
distribution;

d) if we have V ≤ b(X)/h(X) (pre-test), we accept directly X , else we
go on with the step e);

e) if we have V ≤ g(X) we accept X , else we reject X and we go back
to step b).

Marcello Chiodi (Università di Palermo) Simulation techniques Stuttgard 2019 97 / 199

The squeeze principle

Ultimately the squeeze principle is convenient if:

b(x) and h(x) are simple to compute, or at least it is easy to compute
b(x)/h(x) (for example b(x) and h(x) may be the union of suitable
line segments);

if it is easy to generate pseudorandom numbers from r(x);

if the two functions b(x) and h(x) squeeze well f (x), meaning that
the area between the curves described by b(x) and h(x) is small.

Marcello Chiodi (Università di Palermo) Simulation techniques Stuttgard 2019 98 / 199

Generation from a discrete r.v.

To generate pseudorandom numbers from the distribution of a discrete r.v.
with a finite number of values and with probability pj (j = 1, 2, . . . , k), we
can use the following procedure:

determine initially

pmax = max
j

pj (j = 1, 2, . . . , k)

generate I from a discrete uniform distribution in the range [1; k], i.e.
such that Prob(I = i) = 1/k (i = 1, 2, . . . , k): we generate a
standard uniform number U and then: I = int(k · U + 1);

generate a random number Z uniformly distributed in [0; pmax] with
f (z) = 1/pmax (we generate a standard uniform number V and then:
Z = Vpmax);

if Z < pi we accept X = xi , otherwise go back to b) (or if V is a
standard uniform number, we accept X if V < pi/pmax).

Marcello Chiodi (Università di Palermo) Simulation techniques Stuttgard 2019 99 / 199

Generation from a discrete r.v.

To show that the exposed method actually generates pseudorandom
numbers from the distribution of interest note that:

Prob(I = i |Z < pi) =
Prob(I = i ∩ Z < pi)

Prob(Z < pi)
=

=
Prob(I = i ∩ Z < pi)∑k
i=1 Prob(I = i ∩ Z < pi)

=

=
(1/k) (pi/pmax)∑k
i=1 (1/k) (pi/pmax)

=
pi∑k
i=1 pi

= pi

Theoretical efficiency of this method is given by:

E =
k∑

i=1

Prob(I = i ∩ Z < pi) =
k∑

i=1

(1/k) (pi/pmax) =
1

k pmax

Marcello Chiodi (Università di Palermo) Simulation techniques Stuttgard 2019 100 / 199

Generation from a discrete r.v.

The average number of generations required to accept I is given by:

N =
1

E
= k pmax ,

and then grows with pmax .

For distributions with the same number of values of the r.v. the method’s
efficiency will be greater for distributions with smaller modal probability.

Obviously the efficiency is greatest if trivially pmax = 1/k , i.e. in the case
of a discrete uniform distribution.

Marcello Chiodi (Università di Palermo) Simulation techniques Stuttgard 2019 101 / 199

Example

I pi pi/pmax

1 0,25 0,625

2 0,30 0,750

3 0,40 1,000

4 0,05 0,125

Algorithm

we generate U from a standard uniform distribution and then we put
I = int(4U + 1), so I is an integer between 1 and 4, with
Prob(I = i) = 1/4;

we generate another standard uniform number V (acceptance test)
and if V = pi/pmax we accept I as originating from the distribution in
question.

Marcello Chiodi (Università di Palermo) Simulation techniques Stuttgard 2019 102 / 199

Example

Marcello Chiodi (Università di Palermo) Simulation techniques Stuttgard 2019 103 / 199

Generation from a continuous r.v. (normal distribution)

Consider the positive part of a standardized normal distribution and factor
the density function in this way:

f (x) =
√

2/π e−x
2/2 =

√
2e/π e−x e−(x−1)2/2

and then we have

C =
√

2e/π = 1, 3155; r(x) = e−x ; g(x) = e−(x−1)2/2.

Acceptance test V ≤ g(x) is given by:

e−(X−1)2/2 ≥ V ⇒ − (X − 1)2/2 ≥ log V ⇒ X − 1 ≤
√
−2 log V

and being X = − log U, since r(x) is the density of an exponential,
ultimately we have:

− log U ≤ 1 +
√
−2 log V

being U and V two independent standardized uniform numbers.
Marcello Chiodi (Università di Palermo) Simulation techniques Stuttgard 2019 104 / 199

Generation from a continuous r.v. (normal distribution)

Marcello Chiodi (Università di Palermo) Simulation techniques Stuttgard 2019 105 / 199

Generation from a continuous r.v. (normal distribution)

To X can be attributed a sign S using a single uniform pseudorandom
number both for U and for the sign S :

generate a standard uniform number U0;

If U0 < 0.5⇒ U = 2U0 and S = −1;

If U0 ≥ 0.5⇒ U = 2U0 − 1 and S = +1;

Marcello Chiodi (Università di Palermo) Simulation techniques Stuttgard 2019 106 / 199

Generation from a continuous r.v. (normal distribution)

The efficiency of the method is given by:
E = P(V ≤ g(x)) = 1/C = 0, 7602.

Marcello Chiodi (Università di Palermo) Simulation techniques Stuttgard 2019 107 / 199

Simple acceptance rejection for multivariate distributions

The technique of acceptance-rejection can also be implemented to
generate random points from processes of non-homogeneous Poisson
spatial point
In the figure there is the theoretical density function (or the intensity
function, in the case of point processes), f (x , y) ≤ M.
We can generate a point from a uniform distribution, on the region x , y
and then accept it if it is U < f (x ,y)

M being U a pseudo-random number
from a uniform distribution in [0, 1]

Obviously the method will be
very inefficient in this case,
given the great non-uniformity
of the function.

Marcello Chiodi (Università di Palermo) Simulation techniques Stuttgard 2019 108 / 199

The ratio-of-uniforms method

Suppose we want to generate random numbers from a distribution with
density function f (x), and we want to use the transformation X = V /U,
with U and V the coordinates of a point chosen at random, with uniform
density, in a closed region C . Then f (U,V) = 1/Area[C], conditionally to
the fact that (U,V) belong to C .

Suppose that the boundaries of the region C are expressed by a limited
function g(v/u) such that u2 + v 2 = [g(v/u)]2.

The function g(v/u) expresses the distance from the origin of points
located on the border of the region C . Thus, the region C consists of all
points P(u, v) such that:

{u ≥ 0; u2 + v 2 ≤ [g(v/u)]2}.

Marcello Chiodi (Università di Palermo) Simulation techniques Stuttgard 2019 110 / 199

The ratio-of-uniforms method

Marcello Chiodi (Università di Palermo) Simulation techniques Stuttgard 2019 111 / 199

The ratio-of-uniforms method

The event {X = x + dx}, i.e. {X = v/u + d(v/u)}, is represented on the
plane (u, v) by points belonging to line segment OA, for which v/u is
constant, of course.

The event {X = x + dx}, i.e. {X = v/u + d(v/u)} is similarly
represented on the plane (u, v) by points belonging to line segment OB.

These two segments form an angle in O indicated with θ.

Given the uniformity of the distribution of points in C , the probability of
the event {x = X = x + dx} is proportional to the area of the region
AOB, enclosed by the two segments OAand OB and by the line of the
boundary of the region C connecting A and B.

Assuming dx very small, we can approximate the area with the triangle’s
area AOB, unless a higher-order infinitesimal with respect to (dx)2, or
with the area of the circular sector of Center O, radius OA and angle θ.

Marcello Chiodi (Università di Palermo) Simulation techniques Stuttgard 2019 112 / 199

The ratio-of-uniforms method

Then, we have:

Area(AOB) ∼= (OA)2 θ = [g(x)]2 [arctg(x+dx)−arctg(x)] ∼= [g(x)]2
dx

1 + x2

The replacement of θ with dx/(1 + x2) gives an approximation of the
increase of arctg(x) of a higher-order infinitesimal with respect to dx ,
being:

darctg(x)

dx
=

1

1 + x2

Ultimately we have:

Prob{x ≤ X ≤ x + dx} ∝ [g(x)]2
dx

1 + x2
,

Prob{x ≤ X ≤ x + dx} = f (x)dx

Marcello Chiodi (Università di Palermo) Simulation techniques Stuttgard 2019 113 / 199

The ratio-of-uniforms method

and then

[g(x)]2
dx

1 + x2
∝ f (x)dx ⇒ [g(x)]2 = k f (x) (1 + x2)

with k a constant that does not depend on x .

Then, the region C is formed by the points

u ≥ 0, u2 + v 2 ≤ [g(v/u)]2 = k f (v/u) (1 + v 2/u2)

and then

u2 + v 2 ≤ k f (v/u) (1 + v 2/u2) ⇒ u2 + v 2 ≤ k f (v/u) (u2 + v 2)/u2

i.e.
u2 ≤ k f (v/u)

Marcello Chiodi (Università di Palermo) Simulation techniques Stuttgard 2019 114 / 199

The ratio-of-uniforms method

Since in the region C by construction we have always u ≥ 0, we ultimately
have:

C :
{

(u, v) | 0 ≤ u ≤
√

k f (v/u)
}

Therefore, the region C is bounded by a function which must be
proportional to the square root of the density of the r.v. X .

The presence of the constant of proportionality is obvious if we consider
that what matters is the form of the region C , and not its size: in fact the
density of points in C is equal to 1/Area[C], so it’s irrelevant the choice of
the proportionality factor.

Think about that if X = V /U then: X = (aV)/(aU), with a a constant.

Marcello Chiodi (Università di Palermo) Simulation techniques Stuttgard 2019 115 / 199

The ratio-of-uniforms method

To generate a random point with uniform distribution in C , the simplest
method is:

consider a rectangle R including C ; R has sides parallel to the
coordinate axes (this can be done only if the region C is bounded:
this happens if f (x) and x2f (x) are limited);

generate the two coordinates U and V uniformly distributed along the
sides of the rectangle, so that the point is generated inside the
rectangle;

then accept the point if it is inside the region and compute X = V /U.

Marcello Chiodi (Università di Palermo) Simulation techniques Stuttgard 2019 116 / 199

The ratio-of-uniforms method

The efficiency of this generation in C is given by:

E =
Area(C)

Area(R)

The smallest rectangular region R that contains C consists of the points
(u, v) such that: (u, v) tali che:

0 ≤ u ≤ max(u), min(v) ≤ v ≤ max(v)

with

max(u) = sup
x

√
h(x) min(v) = inf

x<0
x
√

h(x) max(v) = sup
x≥0

x
√

h(x)

if max(u), min(v) and max(v) are limited (we put h(x) = k f (x)).

Marcello Chiodi (Università di Palermo) Simulation techniques Stuttgard 2019 117 / 199

Cauchy distribution

Marcello Chiodi (Università di Palermo) Simulation techniques Stuttgard 2019 118 / 199

Cauchy distribution

For the Cauchy distribution, with density function:

f (x) =
1

π (1 + x2)
, proporzionale ad h(x) =

1

1 + x2
,

the region C is bounded by:

k
√

f (x) =
√

h(x) =
1√

1 + x2
=

1√
1 + (v/u)2

=
u√

u2 + v 2

from which the condition:

u ≤
√

u2 + v 2 and then u2 + v 2 ≤ 1.

The efficiency of the method is given by: E = Area(C)/Area(R) = π/4.

Marcello Chiodi (Università di Palermo) Simulation techniques Stuttgard 2019 119 / 199

Beta distribution (Johnk’s method, 1964)

f (x) =
xα−1 (1− x)β−1

B(α, β)
, 0 ≤ x ≤ 1 α, β > 0

with

B(α, β) =

∫ 1

0
xα−1 (1− x)β−1 dx =

Γ(α) Γ(β)

Γ(α + β)

Marcello Chiodi (Università di Palermo) Simulation techniques Stuttgard 2019 121 / 199

Beta distribution (Johnk’s method, 1964)

According to the Johnk’s method we can generate pseudorandom
observations from a beta distribution with the following simple steps:

U and V are two independent standard uniform pseudorandom
numbers;

we put: Y = U1/α, Z = V 1/β and X = Y /(Y + Z);

conditionally to Y + Z ≤ 1, X is a pseudorandom number from a
beta distribution with parameters α and β.

Marcello Chiodi (Università di Palermo) Simulation techniques Stuttgard 2019 122 / 199

Beta distribution (Johnk’s method, 1964)

We demonstrate that this is true.

The density functions of Y and Z are given by:

fY (y) = α yα−1, fZ (z) = β zβ−1

Considering

X =
Y

Y + Z
, W = Y + Z

we have the inverse transformations

y = w x , z = w(1− x)

so it is easy to see that the Jacobian of the transformation from (Y ,Z) is
given by: J = w .

Marcello Chiodi (Università di Palermo) Simulation techniques Stuttgard 2019 123 / 199

Beta distribution (Johnk’s method, 1964)

The non conditional density function of X and W is given by:

fX ,W (x ,w) = αβxα−1(1− x)β−1wα+β−1, 0 ≤ x ≤ 1, 0 ≤ w ≤ 2.

To find the density function of X , conditional to W ≤ 1, we apply the
theorem of conditional probabilities:

fX (x |0 ≤W ≤ 1) =
fX ,W (x , 0 ≤W ≤ 1)

P(0 ≤W ≤ 1)
=

∫ 1
0 fX ,W (x ,w)dw∫ 1

0

∫ 1
0 fX ,W (x ,w)dwdx

For the numerator it is easy to see that:∫ 1

0
fX ,W (x ,w)dw = αβxα−1(1− x)β−1/(α + β).

Marcello Chiodi (Università di Palermo) Simulation techniques Stuttgard 2019 124 / 199

Beta distribution (Johnk’s method, 1964)

The denominator is just a normalization constant given by:

P(0 ≤W ≤ 1) =

∫ 1

0

∫ 1

0
fX ,W (x ,w)dwdx =

=
αβΓ(α)Γ(β)

(α + β)Γ(α + β)
= B(α, β)

αβ

α + β
,

so we have finally:

fX (x |0 ≤W ≤ 1) =
xα−1 (1− x)β−1

B(α, β)
.

Marcello Chiodi (Università di Palermo) Simulation techniques Stuttgard 2019 125 / 199

Beta distribution (Johnk’s method, 1964)

The efficiency of this method is given by the probability of acceptance,
which can also be expressed as:

E = P(0 ≤W ≤ 1) = B(α, β)
αβ

α + β
=

Γ(α + 1)Γ(β + 1)

Γ(α + β + 1)

β
α 0,25 0,50 1,00 2,00 5,00

0,25 0,927 0,874 0,800 0,711 0,588

0,50 0,874 0,785 0,667 0,533 0,369

1,00 0,800 0,667 0,500 0,333 0,167

2,00 0,711 0,533 0,333 0,167 0,048

5,00 0,588 0,369 0,167 0,048 0,004

Marcello Chiodi (Università di Palermo) Simulation techniques Stuttgard 2019 126 / 199

Gamma distribution

f (x) =
λα xα−1 e−λx

Γ(α)
, x ≥ 0 α, λ > 0

with

Γ(α) =

∫ ∞
0

xα−1 e−x dx

Marcello Chiodi (Università di Palermo) Simulation techniques Stuttgard 2019 127 / 199

Gamma distribution (α < 1 and λ = 1)

Consider the case λ = 1; to get a random number Y from a gamma
distribution with any value of the parameter λ, simply generate X from a
gamma distributione with λ = 1 and then put Y = X/λ.

We use the rejection method.

To search for a dominating function when α < 1 we can use the
inequalities: {

xα−1 e−x ≤ xα−1 0 ≤ x ≤ 1
xα−1 e−x ≤ e−x x > 1

so dividing both the members of the two inequalities for Γ(α) we have:

f (x) ≤ h(x) =

{
xα−1/Γ(α) 0 ≤ x ≤ 1
e−x/Γ(α) x > 1

Marcello Chiodi (Università di Palermo) Simulation techniques Stuttgard 2019 128 / 199

Gamma distribution (α < 1 and λ = 1)

Marcello Chiodi (Università di Palermo) Simulation techniques Stuttgard 2019 129 / 199

Gamma distribution (α < 1 and λ = 1)

To get r(x) should be calculated C by normalizing h(x):

C =

∫ ∞
0

h(x)dx =

(∫ 1

0
xα−1dx +

∫ ∞
1

e−xdx

)
/Γ(α) =

(
1

α
+

1

e

)
/Γ(α)

so

r(x) =
h(x)

C
=

xα−1/

(
1
α + 1

e

)
0 ≤ x ≤ 1

e−x/
(

1
α + 1

e

)
x > 1

To generate by r(x) we can use the method of inversion of the distribution
function:

R(x) =

∫ x

0
r(t)dt =

xα−1/

(
1 + α

e

)
0 ≤ x ≤ 1

1
1+α

e
− e−x− 1

e
1
α

+ 1
e

= 1− e−x

1
α

+ 1
e

x > 1

Marcello Chiodi (Università di Palermo) Simulation techniques Stuttgard 2019 130 / 199

Gamma distribution (α < 1 and λ = 1): Algorithm

Initialization

a) Set k = 1 + α/e.

Body of the algorithm

b) Generate U and V from a standard uniform distribution;

c) if U ≤ 1/k put X = (U k)1/α, else go on to e)
(First part of the distribution);

d) if V = e−X accept X else reject X and go back to b);

e) X = − log[k(1− U)/α] (Second part of the distribution);

f) if V = Xα−1 accept X else reject X and go back to b).

Marcello Chiodi (Università di Palermo) Simulation techniques Stuttgard 2019 131 / 199

Gamma distribution (α < 1 and λ = 1)

As usual, theoretical efficiency is given by 1/C (probability of acceptance):

E =
1

C
=

Γ(α)

1/α + 1/e
= e

Γ(α + 1)

α + e

We have also:

lim
α→0+

E = 1, lim
α→1
E =

e

1 + e
∼= 0, 731

α 0,010 0,100 0,250 0,500 0,750 0,900

E 0,991 0,918 0,830 0,749 0,720 0,723

Marcello Chiodi (Università di Palermo) Simulation techniques Stuttgard 2019 132 / 199

Gamma distribution (α > 1 and λ = 1)

In general, are f (x) and r(x) two density functions and F (x) and R(x) the
corresponding distribution functions.

We want to generate random numbers from F (x), but we know how to
generate from R(x) by inversion of the distribution function.

We set:

M = max
x

(
f (x)

r(x)

)
Algorithm

generate U and V from a standard uniform distribution;

generate X from R(·), i.e. X = R−1(U);

if f (x)
M r(x) ≥ V then X is accepted.

Marcello Chiodi (Università di Palermo) Simulation techniques Stuttgard 2019 133 / 199

Gamma distribution (α > 1 and λ = 1)

To obtain random numbers from a gamma distribution with α > 1 and
λ = 1, we can use:

R(x) =
xh

αh + xh

r(x) =
h αh xh−1

(αh + xh)2

with

h =
√

2 α− 1

The algorithm has an efficiency that, for large values of α, tends to
√
π/2.

Marcello Chiodi (Università di Palermo) Simulation techniques Stuttgard 2019 134 / 199

Weibull distribution

f (x) = λ α xα−1 e−λx
α

; F (x) = 1− e−λx
α

; x ≥ 0

Marcello Chiodi (Università di Palermo) Simulation techniques Stuttgard 2019 135 / 199

Weibull distribution

To generate X from such distribution, it is sufficient to observe that

Y = Xα

has an exponential distribution with λ parameter, so we need to generate
only Y from this distribution and then get X using the inverse
transformation

X = Y 1/α;

so, ultimately:
X = [(− log U)/λ]1/α

is a random number from a Weibull distribution, with U a random number
generated from a standard uniform distribution, as usual.

Marcello Chiodi (Università di Palermo) Simulation techniques Stuttgard 2019 136 / 199

Introduction

Compared to the techniques used for univariate distributions, be aware
that for generating pseudorandom numbers vectors:

the technique of inversion of the distribution function is not directly
applicable because F (X1,X : 2, . . . ,Xn) = U, in general, has not a
unique solution {X1,X2, . . . ,Xn}.

we can generate pseudorandom numbers vectors through
transformations of multiple random variables.

rejection method is broadly applicable, although not always leads to
efficient algorithms.

the ratio-of-uniforms method is generalizable to the multivariate case.

Marcello Chiodi (Università di Palermo) Simulation techniques Stuttgard 2019 138 / 199

Use of the conditional distributions

A rather general technique makes use of conditional distributions
(Rosenblatt, 1952).

f (x1, x2, . . . , xn) = f (xn|x1, x2, . . . , xn−1) · f (xn−1|x1, x2, . . . , xn−2) · · ·

f (x3|x1, x2) · f (x2|x1) · f (x1)

Then, we may proceed as follows:

generate a random number X ∗1 from distribution with density function
f (x1);

generate X ∗2 from distribution with density function f (x2|X ∗1);

go on in this way until the generation of the last vector component,
X ∗n from distribution with density function f (xn|X ∗1 ,X ∗2 , . . . ,X ∗n−1).

(X ∗1 ,X
∗
2 , . . . ,X

∗
n−1,X

∗
n) is a random vector from the n variate

distribution with joint density function f (x1, x2, . . . , xn).

Marcello Chiodi (Università di Palermo) Simulation techniques Stuttgard 2019 139 / 199

Generation of pseudorandom vectors from a multivariate
normal distribution

To generate pseudorandom vectors y from a p variate normal distribution
with density function:

f (y;µy,Σy) =
1√

(2π)p |Σy|
· exp

{
−1

2

[
(y − µy)T Σ−1

y (y − µy)
]}

we have to determine first a matrix A such that:

A AT = Σy

(the matrix A can be determined using the Cholesky decomposition).

Marcello Chiodi (Università di Palermo) Simulation techniques Stuttgard 2019 141 / 199

Generation of pseudorandom vectors from a multivariate
normal distribution

At this point, just generate a vector x of p independent normal
standardized pseudo-random numbers and compute:

y = A x + µy

In fact, remembering that

E(x) = 0, Σ(x) = E
[
(x− µx) (x− µx)T

]
= E(x xT) = I

we have
E(y) = E [A x + µy] = A E(x) + µy = µy

Σ(y) = E
[
(y − µy) (y − µy)T

]
= E

[
(A x) (A x)T

]
= A E(x xT) AT = Σy

Marcello Chiodi (Università di Palermo) Simulation techniques Stuttgard 2019 142 / 199

Mixtures of multivariate normal distributions

The density function of a mixture of k multivariate normal distributions
with m components is given by:

f (x) =
k∑

i=1

pi fi (x;µi ,Σi) con
k∑

i=1

pi = 1

To generate a random number from this mixture of distributions you must:

generate an indix j from a discrete distribution with probability pi ;

generate then the pseudo-random vector x from fj(·) in
correspondence of j .

Marcello Chiodi (Università di Palermo) Simulation techniques Stuttgard 2019 144 / 199

Contingency tables with margins not assigned

Let A and B be two characters with values ai (i = 1, 2, . . . , r) and bj

(j = 1, 2, . . . , c); to generate a table we need to generate N pseudorandom
value pairs (Ak ,Bk) (k = 1, 2, . . . ,N), so that
Prob(Ak = ai ,Bk = bj) = pij .

Algorithm

first generate Ak from the marginal distribution of A, with probability
pi ., choosing the row in the table.

conditionally to this choice, generate Bk from the i-th conditional
distribution of B, with probability: pj |i = pij/pi .

Marcello Chiodi (Università di Palermo) Simulation techniques Stuttgard 2019 146 / 199

Contingency tables with margins assigned

Algorithm

Initialization

a) set N the total of the considered table frequencies.

b) set Ti = ni . (i = 1, 2, . . . , r) and Sj = n.j (j = 1, 2, . . . , c);

c) set M = 0;

d) set nij = 0 (i = 1, 2, . . . , r ; j = 1, 2, . . . , c);

Marcello Chiodi (Università di Palermo) Simulation techniques Stuttgard 2019 147 / 199

Contingency tables with margins not assigned

Body if the algorithm

e) Generate I from a discrete distribution with probabilities pi given by:
pi = Ti/(N −M) (i = 1, 2, . . . , r);

f) Generate j from a discrete distribution with probabilities pj given by:
pj = Sj/(N −M) (j = 1, 2, . . . , c);

g) Update nIJ = nIJ + 1;

h) Update: M = M + 1; TI = TI − 1; SJ = SJ − 1;

i) If M < N go back to step e) else stop the algorithm.

Marcello Chiodi (Università di Palermo) Simulation techniques Stuttgard 2019 148 / 199

The system of R for the management of probability
distributions

The pseudo random number generation from a particular distribution is
within the general system of R for statistical distributions
R: The Gamma Distribution
Density, distribution function, quantile function and random generation for
the Gamma distribution with parameters shape and scale.
Usage

1 dgamma (x, shape , rate = 1, scale = 1/rate , log = FALSE)

2 pgamma (q, shape , rate = 1, scale = 1/rate , lower.tail = TRUE ,log.p

= FALSE)

3 qgamma (p, shape , rate = 1, scale = 1/rate , lower.tail = TRUE ,log.p

= FALSE)

4 rgamma (n, shape , rate = 1, scale = 1/rate)

codiceGamma1.R

Marcello Chiodi (Università di Palermo) Simulation techniques Stuttgard 2019 150 / 199

Example: the gamma distribution in R

x, q

vector of quantiles.

p

vector of probabilities.

n

number of observations.

rate

an alternative way to specify the scale.

shape, scale

shape and scale parameters. Must be positive, scale strictly.

log, log.p

logical; if TRUE, probabilities/densities p are returned as log(p).

Marcello Chiodi (Università di Palermo) Simulation techniques Stuttgard 2019 151 / 199

Generating random numbers with various distributions of R

Routines to generate random numbers in R are fairly simple to use and
belong to one scheme of function:

1 unigenera <-function(n=1, distribution="uniform",par=c(0,1)){

2 x=switch(distribution ,

3 "uniform" = runif(n,min=par[1],max=par [2]),

4 "normal" = rnorm(n,mean=par[1],sd=par [2]),

5 "gamma" = rgamma(n,shape=par[1],rate=par [2]),

6 "beta" = rbeta(n,par[1],par [2]),

7 "binomial" = rbinom(n,par[1],par [2]),

8 "poisson" = rpois(n,par [1]),

9 "logistic" = rlogis(n, location = par[1], scale =par [2]),

10 "student" = rt(n,par [1]),

11 "weibull" = rweibull(n, par[1], scale = par [2]),

12 "lognormal" = rlnorm(n, meanlog = par[1], sdlog = par [2])

13)

14 return(x)

15 }

codiceSimul2.R

Marcello Chiodi (Università di Palermo) Simulation techniques Stuttgard 2019 152 / 199

Algorithms Obsolescence

For each distribution there are now many algorithms for generating
random numbers and it is likely that some topic may soon become
obsolete (or be already!) but it is always a risk for everything that is
somehow linked not only to theoretical, but also to technological
developments;

the continuous increase of processing speed and the evolution of
processors (at least for the PC’s), often frustrate the need for subtle
technical tricks measures that were used to save some operations in
the execution of an algorithm for generating random numbers!

example

There is a lot of examples of obsolete algorithms

Marcello Chiodi (Università di Palermo) Simulation techniques Stuttgard 2019 153 / 199

Simulation Techniques in Statistics

Simulated distributions

The idea behind Monte Carlo methods is that the next best
thing to knowing the statistics of a distribution-or equivalently,
its density-is to have a very large sample from that distribution.
Since the empirical cumulative distribution function (ecdf) con-
verge to the true cdf, any function of the ecdf will converge to the
corresponding function of the cdf itself

(Thisted, 1988, pag. 303)

If you do not know the exact distribution of a function of sample data,
the best thing to do is to extract a sample as large as possible!

This is exactly what you do when you do not know the value of a
specific statistics in a real population: you draw a sample!

Clearly, the greater m (the amplitude of the extracted sample), the
better the approximation to the sampling distribution

Marcello Chiodi (Università di Palermo) Simulation techniques Stuttgard 2019 155 / 199

Simulation of sampling distributions: Beta distribution

Consider a beta distribution
with parameters α = 0.7 and
β = 0.9.

f (x) =
1

B (α, β)
xα−1(1−x)β−1 (0 ≤ x ≤ 1)

You might wonder what shape has the sampling distribution of
averages of sample of size n drawn from this distribution
We know, however, at least the first and second theoretical moments
of the distribution, but what shape will it take?
In particular, we are interested in small values of n (because for large
n, large sample theory helps us)

Marcello Chiodi (Università di Palermo) Simulation techniques Stuttgard 2019 156 / 199

Simulated sampling distribution of arithmetic mean

To visualize the concept of simulated sampling distribution, observe
the example.

I put n = 5

I drew 20 samples of size 5 of pseudo-random numbers from a beta
distribution with parameters α = 0.7 and β = 0.9.

the R code is as follows:

1 x =rbeta (100, shape1 =0.7, shape2 =0.9)

2 x =matrix(x,20,5)

3 means =apply(x,1,mean)

codiceMBeta1.R

Marcello Chiodi (Università di Palermo) Simulation techniques Stuttgard 2019 158 / 199

Output

An Example
The 20 samples of size 5:
[, 1] [, 2] [, 3] [, 4] [, 5]

[1,] 0,611 0,083 0,079 0,833 0,340

[2,] 0,087 0,475 0,010 0,008 0,866

[3,] 0,107 0,589 0,399 0,831 0,907

[4,] 0,194 0,630 0,546 0,479 0,873

· · · · · ·
· · · · · ·
[19,] 0,937 0,937 0,962 0,173 0,533

[20,] 0,106 0,055 0,260 0,596 0,509

The arithmetic means
calculated on 20 samples:
[1] 0,389 0,289 0,567 0,544

0.609 0.622 0.577

0.537 0.412 0.613

0.386 0.423 0.322

0.698 0.539 0.288

0.407 0.388 0.708

0,305

These averages are a sample of size 20 drawn from the theoretical
distribution averages of samples of size 5 from a beta distribution
with parameters α = 0.7 and β = 0.9.

Marcello Chiodi (Università di Palermo) Simulation techniques Stuttgard 2019 159 / 199

Simulation with m = 100000

Clearly, 20 samples were too few to get information of any use

I rerun the same code with some modifications in R

1 m =100000

2 n =5

3 x =rbeta(n*m,shape1 =0.7, shape2 =0.9)

4 x =matrix(x,m,n)

5 means =apply(x,1,mean)

6 moments =first4(means)

7 moments$moments

8 [1] 0.4375046723 0.0189213123 0.0002306912 0.0009818761

codiceMBeta2.R

R execution

Now we have a sample of size 100000! We can expect that the
information in this new sample are much more precise and that we can
get a very good approximation of the real sampling distribution of M5

Marcello Chiodi (Università di Palermo) Simulation techniques Stuttgard 2019 160 / 199

Descriptive statistics of the simulated distribution

It is convenient to summarize the simulated distribution by some
descriptive statistics

> Summary (average)

Min 1st Qu. Mean Median 3rd Qu. Max

0.02043 0.34060 0.43520 0.43750 0.53220 0.94330

= first4 moments (averages)

[1] 0.4375046723 0.0189213123 0.0002306912 0.0009818761

The theoretical values of the first two moments of the

distribution of M5 are

E [M5] = E [X] =
α

α + β
= 0.4375

V [M5] =
V [X]

n
=

1

n

αβ

(α + β)2(α + β + 1)
= 0.01893029

Marcello Chiodi (Università di Palermo) Simulation techniques Stuttgard 2019 161 / 199

The sample of 100,000 elements will
approximate well the true sampling
distribution.
In the histogram the density of a normal
distribution has been superimposed (for
simplicity, with data parameters from
the mean and the variance of the
simulated distribution)
Obviously the size of individual samples
(n = 5) is too small to let us think to
approximate the sampling distribution
through the normal one!
For the graphics we used the R code:

1 xvec=seq(0,1,by =0.001)

2 hist(medie ,nclass =50,freq=FALSE)

3 lines(xvec ,dnorm(xvec ,mean=moments$moments [1],

4 sd=sqrt(moments$moments [2])),col="red")

codiceMBeta3.R

Marcello Chiodi (Università di Palermo) Simulation techniques Stuttgard 2019 162 / 199

Comments on the example

Some general considerations on this simple example:
Keep in mind the deep difference between m number of simulations and n,
the individual samples size

Differences between m and n

m relates the amplitude of the simulated distribution: the results
obtained generally have an average error proportional to 1√

m
(beyond

a certain limit we do not gain too much when increasing m)

n relates to the sampling distribution being simulated: changing n
means to study the distribution of another r.v. Tn

Discussion on the example:

1 Increasing m beyond 100,000 give use more precision (less simulation
variance), not necessary useful

2 Changing n means investigating the sampling distribution of another
r.v. (M10 instead of M5)

Marcello Chiodi (Università di Palermo) Simulation techniques Stuttgard 2019 164 / 199

Comments on the example

In R is particularly easy to generalize the scheme used.

For example, it is enough to know how to generate numbers from
other distributions.

In general we might be interested in the simultaneous distribution of
k estimators.

Since the algorithm of generation of random number generates a
sequence starting from some initial values, it is always possible to
repeat the same sequence, storing the value of the starting seed
(.Random.seed in R)

Marcello Chiodi (Università di Palermo) Simulation techniques Stuttgard 2019 165 / 199

A general simulation scheme

to simulate the sampling distribution of k estimators based on m
samples of n pseudo-random numbers (or vectors) generated from a
particular population, a general structure of the program that
generalizes the example shown on the beta distribution can be used.

1 m =100000

2 n =5

3 x =rbeta(n*m,shape1 =0.7, shape2 =0.9)

4 x =matrix(x,m,n)

5 means =apply(x,1,mean)

6 moments =first4(means)

7 moments$moments

8 [1] 0.4375046723 0.0189213123 0.0002306912 0.0009818761

codiceMBeta2.R

quite simply in the previous rows we can change m, n, the type of
distribution (beta with certain parameters, or other distributions) or
we can compute other estimates of which we want to approximte the
sampling distribution

Marcello Chiodi (Università di Palermo) Simulation techniques Stuttgard 2019 167 / 199

A general algorithm

procedure Simulated.sampling.distr(m,n,k,type.pop)
. m is the number of simulated samples

. n is the size of each sample
. k is the number of estimators to study

. type.pop is the type of population
for j = 1→ m do

Generate the j-th sample x of size n from type.pop

for h = 1→ k do
t(h)= compute.estimate[h](x)

. e.g. t(1) = median(x), t(2) = trimmed(x)
estimate(j , h) = t(h)

end for . End operations j-th sample
end for . End of samples generation
Summarize(estimate)

. Estimation of the k empirical distributions
end procedure

Marcello Chiodi (Università di Palermo) Simulation techniques Stuttgard 2019 168 / 199

at the end of the program we may conduct any descriptive analysis on
the k columns of the matrix estimate as for example the calculation
of empirical significance levels of tests or computation of percentiles
of k columns, useful when we want to approximate the distributions
of test and we do not know the exact distributions.

It was assumed, in the skeleton of the algorithm, that there is the ability to store
the m× k simulated estimates in a matrix. This hypothesis may be unrealistic if m
is the order of million and if k is not small

In this case, we should modify the procedure so that, for the vector estimates t()
obtained for the j-th sample, we should update sums and sums of squares if we
want the sample means,variances and covariance of the simulated distributions of
the estimates t

we will save memory, but you will be required to know in advance which synthetic
summary of the k simulated sampling distributions t are needed.

Alternatively the values of t () can be stored on file (for each samplee): this can
lead to considerable inefficiencies, since it obliges for each sample to writing data
to files that could be slower than the step of computation for each of the samples.

Marcello Chiodi (Università di Palermo) Simulation techniques Stuttgard 2019 169 / 199

In fact, if one is interested not only in the first two moments of
simulated distribution of the estimators, but also in estimating its
shape, we should compute the frequency distribution in h classes of
values of k estimators, for construction of histograms.

this will involve the disadvantage that the system of intervals must be
already prepared, so we would need to a rough idea of the magnitude
of range of each estimator and fix a value of h sufficiently large.

Marcello Chiodi (Università di Palermo) Simulation techniques Stuttgard 2019 170 / 199

Repeat a simulation

Remember that the use of a generator based on recursive relations of
any kind, allows the possibility of repeat the simulation with the same
samples, if we store the value of the vector of initial seeds
.Random.seed

It is always a good practice to store the initial value, so to be able to
repeat the same simulation, adding the coomputation of other
quantities, or we can make a first assessment of the ranges of
variation of the amount covered by the simulation, and then
computing histograms and frequency distribution in a secoond
execution.

Marcello Chiodi (Università di Palermo) Simulation techniques Stuttgard 2019 171 / 199

R code for a basic scheme of simulation

code simulgen1 to rewrite with english comments

1

2

3 #

--

4 #

5 # routines di simulazione a UNA variabile

6 #

7 # per ogni distribuzione "distr" è necessario definire una serie di

defaults:

8 #

9 # paramdefaults [[distr]]

10 # limitdefaults [[distr]]

11 # una definizione di estrazione di vettori pseudo -casuali in

unigenera (o bivgenera per le bivariate)

12 #

13 #

14 #

15 #

--

codiceSimulgen1.RMarcello Chiodi (Università di Palermo) Simulation techniques Stuttgard 2019 172 / 199

R code for a basic scheme of simulation

1

2 univariate.samples <- function(nsamples =10000 ,n=5,modello="normal",

parm=c(0,1)){

3 if(missing(parm)) parm <- paramdefaults [[modello]]

4 nsamples = min(sup.nsamples ,trunc(abs(nsamples)))

5 n = min(sup.n,trunc(abs(n)))

6 x = unigenera(nsamples*n,distribution=modello ,par=parm)

7 x = matrix(x,nsamples ,n)

8 return(list(x=x,m=apply(x,1,mean), median=apply(x,1,median),

9 central=apply(x,1,central),var.n=(n-1)*apply(x,1,var)/n

10)) }

codiceSimulgen2.R

Marcello Chiodi (Università di Palermo) Simulation techniques Stuttgard 2019 173 / 199

Simulation for regression models

Simulation of extraction of samples from general regression models.
initialization:

1 Fix the sample size n and the number of samples to generate, m.
2 Fix n vectors of p-component xi , i = 1, 2, . . . , n, (with a random

choice, or according to a fixed design).
3 Fix the values of the k components vector of parameters θ .
4 Fix the values of ψ .
5 Compute the n theoretical values µi = g(xi ,θ), i = 1, 2, . . . , n;

generation of the j-th sample:
6 then for the j-th sample of simulated j = 1, 2, . . . ,m generates a

sample of size n (i.e. εj1, . . . , εj n) from the distribution f (ε,ψ)
established for accidental component

7 The single sample is obtained putting yji = h(g(µi), εji),
i = 1, 2, . . . , n

8 On each sample various quantities are computed;

Marcello Chiodi (Università di Palermo) Simulation techniques Stuttgard 2019 175 / 199

Standard errors of simulation

The standard error of the estimated quantities in a study based on m
simulations is proportional to 1√

m

If m is large, the distributions of means and variances of the
simulated distributions are approximated by the normal distribution.

Let Mm(Z) and S2
m(Z) the mean and variance of the m simulated

values of Z (an estimator, a test, a 0-1 variable result of a test and so
on)

If the true values of the mathematical expectation and variance
(generally unknown) of the estimator Z , are E [Z] and V [Z] then
one can construct (1− α) level asymptotic confidence intervals
(certainly good approximations if m is very large)

Marcello Chiodi (Università di Palermo) Simulation techniques Stuttgard 2019 176 / 199

Standard errors of simulation studies

These results are very important and provide good approximations
because m is generally high and normal approximations to
distributions of Mm(Z) and S2

m(Z) are undoubtedly very accurate.

these results come from the fact that

Mm(Z)− E [Z]√
S2
m(Z)/m

→ N(0.1)

S2
m(Z)−V [Z]√

(µ4(Z)− S4
m(Z))/m

→ N(0.1)

(µ4(Z) is the fourth central moment of Z)

Marcello Chiodi (Università di Palermo) Simulation techniques Stuttgard 2019 178 / 199

Asymptotic confidence intervals

Asymptotic 1− α confidence intervals for simulated mean and
variance of an estimator Z

Mm(Z)− kα
SM(Z)√

m
≤ E [Z] ≤ Mm(Z) + kα

SM(Z)√
m

S2
m(Z)− kα

√
µ4(Z)− S4

m(Z)

m
≤ V [Z] ≤ S2

m(Z) + kα

√
µ4(Z)− S4

m(Z)

m

Marcello Chiodi (Università di Palermo) Simulation techniques Stuttgard 2019 179 / 199

simulated significance levels

Simulated significance level of a test based on the binomial theory

Theoretical distribution (left) of a generic z-test under the null
hypothesis and under an alternative hypothesis: theoretical probability
of errors of first type (and of the second type). On the right the
simulated distribution of the same z-test under the null hypothesis
and under an alternative hypothesis: the estimated probabilities of
errors of first and second kind.

Marcello Chiodi (Università di Palermo) Simulation techniques Stuttgard 2019 181 / 199

Simulated significance levels

Even a significance level can be estimated through a simulation, if the
sampling distribution of Z under H0 is not known. Since α is a
probability, a basic idea is to estimate α through a relative frequency
of success.
Suppose there is a fixed area of rejection Rα
generated m independent samples of size n from the distribution of
interest or from a distribution for which H0 is true;
on each of them calculate the value of the test zj , j = 1, 2, . . . ,m
zj occurs (zj = 1) if zj ∈ Rα that is if for the j−th sample simulated
we reject the null hypothesis, which we know to be true by
construction
At the end we count mR , the number of values zj falling in the
rejection region and estimate:

α̂ =
mR

m
, with σ̂(α̂) =

√
α̂(1− α̂)

m

Obviously the standard error is always proportional to 1√
m

Marcello Chiodi (Università di Palermo) Simulation techniques Stuttgard 2019 182 / 199

Power of a test

The above approach of course can be extended to compute a
simulated power of a test

It is still based on the binomial theory (we will count samples in teh
rejection region)

Of course we will sample from H1 possibly for a sequence of
parameter values for the alternative hypothesis, so to have a
simulated power function

The simulation approach is adaptable to the estimation of the level of
coverage of confidence intervals discussion on possible

examples We will count the number of times that the interval
contains the true value of θ

Marcello Chiodi (Università di Palermo) Simulation techniques Stuttgard 2019 184 / 199

The advantages are:

Great flexibility of use, and applicability to a large number of
situations, at least all those for which can be set to a parametric
model;

Great simplicity: in fact for elementary applications it is sufficient to
know how to generate samples of the particular random numbers and
be able to calculate the estimator or the test of interest on each
sample, so this technique is usable at different levels of the study;
rapidity of application;

Independency from the number of dimensions (at least there is a
computational complexity linearly dependent on d , but not explosive!)

ease of communication: it is now very common the use of simulation
techniques in scientific work, it is rarely necessary to explain in detail
the particular pattern used.

Marcello Chiodi (Università di Palermo) Simulation techniques Stuttgard 2019 186 / 199

The value of a simulation study can also be of a mainly comparative:
to show that an estimator is better than another, that a test is more
powerful than another, that a certain approximation is satisfactory
analytical (or it is it better than others) for certain values of n, etc..

The simulation techniques provide a very flexible tool to empirically
evaluate the effectiveness of some inferential techniques that you do
not know the exact characteristics, as we will see with some examples

Marcello Chiodi (Università di Palermo) Simulation techniques Stuttgard 2019 187 / 199

Disadvantages of simulation techniques

The disadvantages, in my view, are basically:

it is an empirical approach: one thing is, for example, to show through
simulation that increasing n the simulated level of significance of a
test approaches the nominal value, (or on the contrary, that it differs
in a significant way), an other thing is instead to show analytically
that the significance level tends to some value α when n diverges!

The results, albeit with the cautions of the previous point, relate only
to situations actually tested, so if a certain result is confirmed with a
large simulated samples drawn from a population that depends on a
parameter θ , and we fixed for example 10 values of θ , nothing in
general ensure use that the results can be extended to any value of θ !

You could also make another objection: it is not analitically very
elegant to use a simulation study if you can use some asymptotic
analytical result even if only approximated.

Marcello Chiodi (Università di Palermo) Simulation techniques Stuttgard 2019 189 / 199

Exact sampling distributions are very few, compared to the infinite range
of possible models that could be built, or otherwise used in practice. Most
of the time are known only asymptotic approximations including the most
classical used in statistics

Marcello Chiodi (Università di Palermo) Simulation techniques Stuttgard 2019 190 / 199

Mixtures of multivariate normal distributions

Generate random numbers from mixtures of k , p−variate normal
distributions with proportions of the mixture given by:
{p1, p2, . . . , pj , . . . , pk}:
theoretical aspects (technically very simple)

1 You can p.e. first generate a random integer J between 1 and k from a
distribution with probability given by the ratio pj

2 we extracta random vector from the J-th component

R package:
library (ks)

function: rmvnorm.mixt (n = 100, mu = c (0.0), Sigmas

= diag (2), props = 1)

Marcello Chiodi (Università di Palermo) Simulation techniques Stuttgard 2019 192 / 199

Examples of multivariate distributions: n = 500

Generation of 500 numbers from a trivariate distribution

Marcello Chiodi (Università di Palermo) Simulation techniques Stuttgard 2019 193 / 199

Examples of multivariate distributions: n = 10000

Generation of 10000 numbers from a distribution trivariate

Marcello Chiodi (Università di Palermo) Simulation techniques Stuttgard 2019 194 / 199

Some other development

Generation from an ARMA(p, q) model;

Generation from a space-time Point Process

Generation of non parametric estimators sampling distribution

variance reduction techniques

Marcello Chiodi (Università di Palermo) Simulation techniques Stuttgard 2019 195 / 199

References I

Box G.E.P., Muller M.E., (1958)
A note on the generation of random normal deviates.
Annals of Mathematical Statistics, 29:610–611.

Chiodi M., (1998)
Tecniche di Simulazione in Statistica.
Rocco Curto Editore.

Dodge Y., (1996)
A natural random number generator.
International Statistical Revue, 64(3):329-344.

Eichenauer-Herrmann J., (1992)
Inversive congruential pseudorandom numbers: a tutorial.
International Statistical Revue, 60(2):167–176.

Johnk M.D. (1964)
Erzeugung von Betarerteilten und Gammaverteilten Zuffallszahlen.
Metrika, 8:5–15.

Marcello Chiodi (Università di Palermo) Simulation techniques Stuttgard 2019 196 / 199

References II

Knuth D., (1981)
The Art of Computer Programming: Seminumerical Algorithms (Vol.2).
Addison–Wesley Edition.

I L’Ecuyer P., Simard R., (2005)
TestU01: A software library in ANSI C for empirical testing of random
number generators.
Laboratoire de simulation et d’optimisation. Université de Montréal IRO.

I Marsaglia G., (1985)
The Marsaglia random number CDROM, with the Diehard battery of tests of
randomness.
Florida State University under a grant from The National Science
Foundation.

Metropolis N., Ulam M., (1949)
The Monte Carlo Method.
Journal of the American Statistical Association, 44:335–341.

Marcello Chiodi (Università di Palermo) Simulation techniques Stuttgard 2019 197 / 199

References III

Piccolo D., (1998)
Statistica.
Il Mulino.

Ripley B.D., (1983)
Computer generation of random variables: a tutorial.
International Statistical Review, 51:301–319.

Ripley B.D., (1990)
Thoughts on pseudorandom number generators.
J. Comput. Appl. Math., 31:153–163.

Rosenblatt M., (1952)
Remarks on a Multivariate Transformation.
Annals of Mathematical Statistics, 23:470–472.

Stigler S.M., (1991)
Stochastic Simulation in the Nineteenth Century.
Statistical Science, 6:89–97.

Marcello Chiodi (Università di Palermo) Simulation techniques Stuttgard 2019 198 / 199

References IV

Tausworthe R.C., (1965)
Random numbers generated by linear recurrence modulo two.
Math. Comp., 19:201–209.

Thisted R., (1988)
Elements of statistical computing: numerical computation.
Chapman and Hall.

Ulam S., (1976)
Adventures of a mathematician.
Charles Scribner’s sons.

Von Neumann J., (1951)
Various techniques used in connection with random digits.
Monte Carlo Method, U.S: Nat. Bur. Stand. Appl. Math. Ser., 12:36–38.

Wichmann B.A., Hill I.D., (2006)
Generating good pseudorandom numbers.
Computational Statistics and Data Analysis, 51:1614–1622.

Marcello Chiodi (Università di Palermo) Simulation techniques Stuttgard 2019 199 / 199

	Introduction
	Why Monte Carlo?
	Monte Carlo integration
	Monte Carlo overcomes the curse of dimensionality
	Monte Carlo Integration and simulated sampling distributions
	Variance reduction techniques
	Monte Carlo: strength and weakness

	Generating pseudo random numbers
	Generating random numbers from uniform distributions
	Linear congruential generators
	Notes on nonlinear congruential generators and other generators
	Testing for randomness

	Pseudorandom number generation from univariate distributions
	Inversion of the distribution function
	Techniques based on transformations of random variables
	Acceptance-rejection method
	The ratio-of-uniforms method
	Examples of generating pseudorandom observations for some known random variables

	Generation of pseudorandom numbers vectors
	Introduction
	Generation of pseudorandom vectors from a multivariate normal distribution
	Mixtures of multivariate normal distributions
	Generation of contingency tables
	The system of R for the management of probability distributions

	Simulation Techniques in Statistics
	Overview
	Simulated sampling distributions
	Comment on the example
	Outline of algorithm of simulation of sampling distributions
	Simulation of regression models

	Theory behind simulation studies
	Standard errors of simulation studies
	Simulated significance levels
	Power of a test
	Advantages and disadvantages of simulation techniques
	Disadvantages of simulation techniques
	Mixtures of distributions

	Other topics
	References

