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Objectives

Main objective of the course is to provide the fundamental tools of
non-parametric statistics .

Estimate univariate and multivariate density functions

Study of dependence relationships among variables.

At the end of the course the student should be able to describe real
data sets using the techniques learned.
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Preliminary Knowledge

mathematical analysis and probability Calculus

Matrix algebra

R statistical programming environment

Numerical optimization techniques

Simulation techniques

Theory of inference (in particular, properties of estimators and linear
regression)
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Teaching Material

Slides (where)
pause or given in the classroom

An integral part of the course materials will be all the exercises
performed, the datasets, the R code and R packages used in the
course

Some specific references will be provided during the course

Thanks to Dr. Antonio Abbruzzo, Prof. Giada Adelfio and Dr.
Mariangela Sciandra for exercises.
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Software used in lectures and tutorials

We will use the open source software R.

using the R software, using different packages dedicated;

R routines written for my courses;

Some theoretical topics of the lectures will be addressed through PC
(in particular through simulations ) . It will be useful in the classroom
that students bring their laptops in the classroom, even for theoretical
lessons .

Exercises on the topics of the course: analysis of real cases .
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Topics

Introductory real problems .

Parametric and non-parametric statistics.

Non parametric estimation of univariate density functions. Kernel
estimators.

Non parametric estimation of multivariate density functions.

Non-parametric regression : kernel estimators, splines and local
polynomial regression.

A little introduction on GAM (generalized additive models)
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Parametric and non-parametric hypothesis

The term nonparametric was born in the context of hypothesis
testing , to indicate inference problems that concern distributions (or
functions) and not parameters .

( parametric Example) :

Ω : X ∼ N (µ, σ2) (1)

H0 : µ = µ0 H1 : µ 6= µ0

The hypothesis concerns the parameter of a population.

Another parametric example:

Ω : Yi ∼ N (α + βxi , σ
2)

H0 : β = β0 H1 : β 6= β0

The hypothesis is still about the parameter of a population.
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Nonparametric Hypothesis

Instead we see two examples of nonparametric hypothesis:

1 H0 : X ∼ N (µ, σ2) H1 : X ∼ D(·), D 6= N
The latter hypothesis does not apply to a parameter, but to a
distribution:
Is X normally distributed ?

2 H0 : F (X ) = F (Y ) H1 : F (X ) 6= F (Y )
Also this hypothesis does not concern parameters, but two
distributions :
Do X and Y have the same distribution ?

Note that in the last example is not specified what is the joint distribution
for X and Y.
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Parametric and non-parametric estimation

parametric Example :

Ω : X ∼ N (µ, σ2) (2)

We want to estimate the parameters µ, σ2 of a population, given a
sample of size n {x1, x2, . . . , xi , . . . , xn}.
(using Maximum Likelihood generally is the optimal strategy)

Another parametric example:

Ω : Yi ∼ N (α + βxi , σ
2)

We want again to estimates the parameters α, β given a sample yi , xi
i = 1, 2, . . . , n.
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non-parametric estimation

non-parametric Example :

Ω : X ∼ D(x) (3)

We want to estimate the distribution D(x) (or better its density) of a
population, given a sample of size n.

Another non-parametric example (non-parametric regression):

Ω : E [Yi ] = g(xi ) (E [Y |X = xi ])

We want to estimates the regression function g(·) without specifying
the kind of function (linear, quadratic, etc.). given a sample of size n
of values yi , xi i = 1, 2, . . . , n
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Real data

The dots are the residences of dead people in a period of about 20 years in
a town, for a specific cause (red: cases) and other causes (blue: controls).
Are the spatial distributions of the points similar (and thus the residence
does not affect the probability of a particular cause of death)?

Figure: Spatial distribution of the residences of cases (red) and controls (blue)
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Comparison of two spatial distributions

Density estimation for controls

Figure: Density estimation for controls
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Preliminary real problems

Density estimation for cases: Is this density similar to the previous one
(controls)?

Figure: Density estimation for cases
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Rating

Screening among firms

Figure: Screening among firms (good versus default)

Which financial indicator should be preferred?
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A seismic sequence

Figure: Time intensity of a seismic sequence (Umbria 1997)
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A seismic sequence

Figure: Time intensity of a seismic sequence (Palermo 2002)
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Spatial intensity

Figure: Spatial seismic intensity function (California seismic catalog)
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Space time intensity

Figure: Space-time seismic intensity function (3-d contour surfaces) (Sicilian
seismic catalog)
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Non parametric regression

(description of data: Anthropometric measurements of a sample of
newborns; weight vs. weeks of gestation and height )
Can we fit a non linear surface (quadratic, exponential, something else)?
Or even a surface with undefined parametric form (and possibly different
for different groups)

Figure: Anthropometric measurements of a sample of newborns
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weight vs. weeks of gestation and height
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Residual plot from a linear regression fit: Estimation of of deviations from
linearity

Figure:
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Essential references

Bowman, A.; Azzalini, A. (1997) Applied Smoothing Techniques for
Data Analysis: The Kernel Approach with S-Plus Illustrations Oxford
Statistical Science Series

Ruppert, D., Wand, M.P., Carrol, R. J (2003). Semiparametric
Regression. Cambridge University

Silverman, B.W. (1998). Density Estimation for Statistics and Data
Analysis. London: Chapman & Hall/CRC.

Takezawa K. (2005) Introduction to Nonparametric Regression. John
Wiley & Sons.

Wand, M.P; Jones, M.C. (1995) Kernel Smoothing. London:
Chapman & Hall/CRC.
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Density function Estimators: Motivations

To get ideas on parametric model

To compare groups

To have information about asymmetry, bimodality, etc..

To estimate density (or intensity) for inhomogeneous (spatially or
temporally) phenomena

To integrate classical parametric methods: e.g. to get ideas on the
distribution of nadom errors by examining the empirical distribution of
residuals.
Review of the examples of introductory lesson.
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Density function estimation of univariate random variables

distribution function

The definition of a density function can be derived from the distribution
function:

FX (x) = Prob {X ≤ x}

density function

if F (x) is differentiable we can write:

fX (x) =
d (FX (x))

d x
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Estimation of the distribution function

The distribution function can be estimated from a sample of n
observations xi (i = 1, 2, . . . , n) from (iid) random variables 1 through the
empirical distribution function

empirical distribution function

F̂X (x) =
#(xi ≤ x)

n

(it can be shown that this estimator can be improved, for example with

F̂X (x) = #(xi≤x)+0.5
n+1 , for now this approximation is sufficient)

This estimate can be always calculated, and it leads to a step function.

1iid: independent and identically distributed (random variables)
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Estimation of the distribution function. Examples with R

empirical distribution function

F̂X (x) =
#(xi ≤ x)

n

example code: ese1 NP2013.R

./ese1_NP2013.R
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Distribution function estimation: examples

Figure: distribution function n = 20 Figure: distribution function n = 500
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Density function estimation

(example) Obviously this method can not be used for density functions.

We can not define a similar estimator for f (x) starting directly from
sample data,
(unless we use an estimator that distributes a mass of 1

n to each
observation, which in general is not really useful)

(while (F̂X (x) is a distribution function! it is the distribution function
of the sample)

We can not even get f̂X (x) deriving F̂X (x), due to discontinuity.
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(A not so useful) density function estimation

For previous samples density estimates based on histograms of individual
observations are shown.
(observations are rounded up to the nearest centimeter, and therefore
there are observations with a frequency greater than one)
[1] 143 144 142 137 144 148 145 135 144 143 136 146 144 134 155 150
137 138
[19] 143 145 143 148 138 148 143 140 145 142 140 137 142 133 142 141
154 138
[37] 150 144 145 139 142 147 142 140 133 145 139 151 151 140 143 133
138 144
[55] 130 147 141 151 141 134 136 144 143 143 136 141 145 145 145 144
127 138
...
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(A not so useful) density function estimation

Two samples of 20 and 500 observations have been drawn from a bigger
data set

Figure: density function n = 20 Figure: density function n = 500
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Density function estimation for large samples

With large samples things goes better ( but in the example there are
rounding problems...)

Figure: density function n = 1, 427
Figure: density function n = 24, 927
(heights at birth)
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Large samples

With very large samples of observations (we will clarify the term very
large ... ) there are fewer problems, because histograms can have
many classes, each with many observations.

The sampling distribution of the number of observations in each class
follows a binomial distribution.

In the following slides, every time we talk about f (x), we assume that the random

variable X has got a density function
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Example with large samples

Figure: histogram of 1,000,000 uniform
random numbers, with 100 intervals

Figure: histogram of 1,000,000 normal
random numbers, with 100 intervals
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Difficulties in the definition of f̂ (x)

The difficulty in the definition of a density function estimator of a
continuous random variable lies on the conceptual difference between
the density and distribution functions for a random variable.

While the latter is always well defined as the probability that X less
than or equal to a certain value x (as well as the empirical equivalent
), the density is defined as the derivative of that function;

(The continuity of F (x) clearly has not an empirical
correspondence , because a large a set of observations will always be
finite and non-dense).
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f (x) as a probability approximation

The probability for a continuous variable is defined for intervals and
not for points;

We know the conceptual difficulties of defining the probability that X
has an exact value x , which is always zero, because X = x is an event
of null measure!

Each of the sample values has a null probability of being drawn

Remember that ∫ +∞

−∞
f (x) dx = 1
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f (x) as an approximation of probability

Another difficulty arises even if we try to see f (x) as a function of a
probability in the following way:

δ

f (x)

x

= Prob
{

x − δ
2 < X ≤ x + δ

2

}
=
∫ x+ δ

2

x− δ
2

f (x) dx = f (ε)δ (≈ f (x)δ)

∃ ε within the interval (mean value theorem)
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Approximations in the density estimates

it is known that the probability that X belongs to an interval can be
approximated by the density at the point:

Prob

{
x − δ

2
< X ≤ x +

δ

2

}
≈ δf (x)

We could approximate the density using (49) for the probability in a
small interval around x :

f (x) ≈
Prob

{
x − δ

2 < X ≤ x + δ
2

}
δ
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Approximations in the density estimates

the probability on the right can be estimated from a sample of n
observations:

Prob

{
x − δ

2
< X ≤ x +

δ

2

}
≈

#
{

x − δ
2 < xi ≤ x + δ

2

}
n

and then:

f̂ (x) =
#
{

x − δ
2 < xi ≤ x + δ

2

}
δ n
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Approximations in the estimate of f (x)

This leads to two orders of approximation:

To approximate the theoretical probability in an interval
Prob

{
x − δ

2 < X ≤ x + δ
2

}
through the density at the central point

(f (x) · δ)

To estimate this probability through sample observations

(
#{x− δ

2
<xi≤x+ δ

2}
n )
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δ small or large?

It is easy to see that δ affects differently the two approximations:

Role of δ

The theoretical probability in an interval is well approximated by the
density at the central point (f (x) · δ) if δ is small

The probability is estimated better when we have more observations
in the interval, and then, with the same n, when δ is large

Role of δ in the approximations

This diversity of behavior of two characteristics of a density estimator with
respect to δ will characterize large part of this course.
This trade-off will appear again in more complex and general settings
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Local and integral properties

Local and integral properties

It should be noted that the approximations we have seen so far are local,
that is, are related to a fixed value of x .
We will extend these concepts to global or integral measures to evaluate
the behavior of f̂ over the whole domain of X
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What to do in general?

If we have few observations? What can we do, without a parametric
model? If we had a parametric model we could compute f (x ; θ̂)

Or, despite we have many observations, the range of the variable is
not well covered (very asymmetric distributions, or suspected presence
of multimodality ...)

Despite having many observations how can we get a continuous
estimate f̂X (x) (possibly with some of its derivatives?) (the histogram
is not, however, a continuous function)

Let’s try to work directly on data to obtain f̂X (x), without using

F̂X (x) (we exclude the inefficient possibility of to approximating F̂X (x) by means of a
continuous function and then deriving it)
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Density function estimation through incremental ratio
approximation

A first approximation is given by the histograms used (whose properties
will not be studied in these lectures, e.g. with reference to how to select
the number of classes) which however provides a discontinuous
estimate of the density.
We can proceed in general considering that:

fX (x) = lim
h→0

Prob {x − h < X ≤ x + h}
2h

and then we can, at least formally, use as an approximation, for fixed h:
(2h = δ of previous slides)

f̂X (x) =
#(x − h < xi ≤ x + h)

2 n h
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approximation of the Incremental ratio as average of
contributions

Each point xi contributes to the estimate of f if it is far from x less than
h. So we can write f̂ (x) as an average of the contribution of each point:

f̂ (x) as an average

f̂X (x) =
1

2 n h

n∑
i=1

I (x − h < xi ≤ x + h) (4)

(I (·) is the indicator function I(TRUE)=1)
The key aspect of the reasoning, that will lead us also to very elaborate
estimators, lies entirely in this approximation of the incremental ratio
as the average of the contributions of the individual observations
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Similarities with the histogram

Note:
In a histogram with k classes the reasoning is similar, but while in (4) each
interval is constructed around each value of x , in the histogram f̂ is estimated
with the same value for all x belonging to the j-th class j = 1, 2, . . . , k, with
[aj−1, aj ] fixed extremes:

f̂X (x , x ∈ [aj−1, aj ]) =
1

n (aj − aj−1)

n∑
i=1

I (aj−1 < xi ≤ aj) (5)
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Average of uniform densities

Let us come back to (4) and collect properly the terms, using a more
compact notation:

f̂X (x) =
1

n

n∑
i=1

Uh(x − xi ) (6)

where:

Uh(z) =

{
1

2h |z | ≤ h
0 |z | > h

Uh(z) is the density of a uniform distribution in the range {−h, h}. To
simplify future generalizations, it is better working with densities of
standardized variables.
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Average of standardized uniform densities

Using a standardized uniform variable , i.e. defined in the interval (-1, 1):

f̂X (x) =
1

n h

n∑
i=1

W

(
x − xi

h

)
(7)

where:

W (z) =

{
1
2 |z | ≤ 1
0 |z | > 1

This form leads us to future generalizations, because f (U) is discontinuous
at the ends and this always leads to the steps in the estimate of f (x) by
(7)
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Examples

R code
examples ⇒
code R

./panel_kernel2013.R
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Density estimation as combination as uniform densities

Example of the previous method with two different values of h

Figure: step density estimates n = 20 Figure: step density estimates n = 20
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Origin of kernel estimators

To eliminate the discontinuity, we can replace the uniform density with
another generic density function K (·)
The general form is:

f̂X (x) =
1

n

n∑
i=1

1

h
K

(
x − xi

h

)
(8)

the function K (·) is called the kernel

h is the width, or window, or bandwidth (or smoothing parameter)
1
k K ( x−xih ) is the weight of each observation in the determination of

f̂ (x).
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Construction of the kernel estimator

Basically, every point spreads its influence according to K (·) and h.

As regards K (·), we consider at the moment proper densities,
symmetrical around zero and standardized.

The most obvious example for K (·) is the density of a standard
normal distribution:

even if not 100% excellent, this choice gives results useful in
many applications, and briefly it is very confortable

Obviously observations xi closer to x are more influent, large values of
h attenuate the influence of the nearest observations and spread their
influence over a wider range.
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Construction of the kernel estimator

Small values of h give weights concentrated in the immediate
proximity of each xi and thus provide less overall density estimates
vary from smooth to x . The influence of each xi is limited to a small
range.

If K (·) is a standard normal kernel , the density out of range
{xi − 4h, xi + 4h} is virtually zero, which means that the observations
far from x more than 4 times the bandwidth h will not influence the
estimate of f (x) (actually even distances of over twice the bandwidth
make the influence of an observation very small)
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density estimation with normal kernel

Density with normal kernel with two different values of h

Figure: normal kernel density estimate,
n = 20

Figure: normal kernel density estimate,
n = 20
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examples

examples with different h

and different K

graphics

dynamic examples with R

and run draw1 ()

\url{./panel\_kernel2013.R}

RIVEDERE
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Types of kernel functions

K (x) determines the shape of the curves while the bandwidth h determines
the width. The kernel estimator therefore depends on two elements:

1 the kernel K, ( its choice has little influence on the results as we
will see later)

2 the bandwidth h, (it influences substantially the results: acting
on h we range from a density with n modes (or peaks) to a flat
one )

We will see these properties theoretically and practically
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Estimation of density with different kernels

Density with 4 different kernels and two different values of h

Figure: 4 different kernels Figure: 4 different kernels
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Types of kernel functions

code examples in R and
./panel_kernel2013.R

these properties will be proved analytically and exemplified with
procedures in R
h is denoted in several ways:
bandwidth,
window,
smoothing parameter,
scale parameter of the kernel function,
etc..
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Common kernel functions

Epanechnikov

(
K =

3
4
√

5

(
1− 1

5 t2
)
−
√

5 ≤ t ≤
√

5

0 otherwise

)
eff (K ) = 1.

Triangular (K = 1− |t| if |t| < 1, 0 otherwise ): eff (K ) ≈ 0.9859.

Gaussian
(

K = 1√
2π

e−(1/2)t2
)

: eff (K ) ≈ 0.9512.

Rectangular
(
K = 1

2 if |t| < 1, 0 otherwise
)
: eff (K ) ≈ 0.9295.

All efficiency values are not very different from 1, even for the rectangular
kernel. So the choice of the kernel can not be based on the MISE,
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Common kernel functions

the MISE will be discussed later, at the moment it is sufficient to say that
it is a global measure of the behavior of an estimator of a density
MISE = Integrated Mean Square Error
Of course, other less statistical considerations hold, such as the degree of
differentiability required and the computational effort.

Example (code R)

./panel_kernel2013.R

codice R interattivo
R
panel kernel2013.R
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Density estimation with different kernel functions

Figure: 4 different kernel estimators n = 20
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Meaning of the kernel estimator of a density

estimator of f (x) based on the incremental ratio

In the estimator of f (x) based on the incremental ratio, the contribution
of each point xi is 0 or 1
according to the fact that the distance from x is greater or less than h

kernel estimator of f (x)

In the kernel estimator of f (x) , the contribution of each point xi varies
according to a function: 1

h K
(
x−xi
h

)
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Analytical characteristics of the kernel function

The kernel function must satisfy the following conditions:∫
R K (x) dx = 1∫
R x K (x) dx = 0∫
R x2 K (x) dx = k2 6= 0 (<∞)

( standardized functions are used, so that k2 = 1)

K (x) ≥ 0 ∀x ;

Therefore, the kernel estimator f̂h(x) is a density of probability, such that∫
R f̂h(x)dx = 1

(K (x) should also be symmetrical but it is not the only possible choice
... ).
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Variable width kernels

Let hj,np the radius of the circle centered at xj that contains other np points; a
definition of a variable kernel can be obtained from:

f̂hj (x) =
1

n

n∑
j=1

1

hj,np

K

(
x − Xj

hj,np

)

in this case, the observed points in regions with sparse data have kernel
flatter (or smoothed).

The result depends on np.

The kernel estimator is still a probability density.

More detailed with respect to the kernel h fixed, even if we use a smaller h.
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Technical justifications of kernel estimators

Approximation of an incremental ratio

Average of the density contributions of each point

Approximation problem or smoothing of a histogram

as a convolution of densities

It can shown that the histogram f̂h(x) is a consistent estimator of f (x), ie

h→ 0, nh→∞⇒ MSE (fh(x))→ 0.

we will prove similar properties for kernel estimators.
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Statistical properties of kernel estimators

1 how to measure the goodness of an estimator? If possible, we will try
to exploit the classic definitions used in a parametric framework.

2 ISE and MISE

3 simulations

4 asymptotic behavior
5 choice of h?

effect of h
effect of K (·)
cross validation or other techniques
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Choice of K (·)

The choice of K is based on considerations relative to:

1 the efficiency of the estimator f̂h(x);
but we will see that the choice of K (·) is not crucial

2 the degree of regularity that we expect f̂h(x) (i.e. if we choose the
uniform kernel, it will be discontinuous!);

3 the computational effort required
(less and less relevant over time)

4 analytical convenience
Some asymptotic and analytical results are obtained more easily if
K (·) is normal, and this is even more true in the multivariate case
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The choice of h

1 if h→ 0, f̂h(x) tends to a sum of quantities (nh)−1K [(x − xi )/h]
which are high in correspondence of xi and small elsewhere. So the
estimated density with f̂h(x) will be irregular and rough with a peak
at each observation;

2 if h→∞, f̂h(x) tends to a sum of quantities (nh)−1K [(x − xi )/h]
which are small and flat, and then the curve estimated will be smooth
with a tendency to smooth the spurious peaks

In summary: small values of h give a local high weight to each observation
(strong irregularities), while high values of h give a low weight to the
individual observations (regular f̂h(x)).
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MISE computation through simulations

Samples of size 100
A simulated sampling distribution: explain the elements of the figure (we
will make during the lesson other simulation experiments)

Figure: Simulations from a mixture of two normal distributions
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Simulations

Example ( R code for simulations)

./codiceNP2013simul1.R

./simulazioni_kernel2012functions.R

codice R
R
codiceNP2013simul1.R

source("simulazioni kernel2012functions.R")

EXPLAIN THE ELEMENTS OF THE FIGURE
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Measurements of the properties of a nonparametric
estimator

Let X1, · · · ,Xn iid v.a. with unknown density f (·).

Bias: B[f̂h(x)] = EF [f̂h(x)− f (x)]

Variance V [f̂h(x)] = EF [f̂h(x)− E [f̂h(x)]]2

Trade-off between bias and variance

As we shall see, there is an inevitable contradiction between the goal of
reducing both distortion and the variance as a function of h.
as in any estimation problem!

⇓

The choice of h is a trade-off between bias and variance ! (as already
seen in estimators based on probabilities on intervals)
The old problem of statistical inference
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Properties of the estimators -1

Initially we consider local properties for a fixed value x0, as if f (x0)
be an unknown parameter to be estimated.

The main point is that we are essentially extending to
nonparametric problems methods of evaluation of estimators
designed for parametric problems

However the importance of the density estimators lies in their ability
to provide information on f (x) in an exploratory phase of data
analysis
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Explorative tools

Another fundamental aspect is the graphical aspect that may have
the representation of a density estimated by the kernel, with a
bandwidth large enough be smooth, but small enough to highlight
possible multimodalities

Given the great number of graphical interactive tools present now,
like those used in this brief course, we can think that practically we
can use all of them.
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Recall on Mean Square Error

The mean square error of a generic point estimator θ̂, is a general measure
of the quality of an estimator:
That is, its capability to give information about the true parameter θ. It is
defined as the expected value (on the sampling distribution of θ̂) of the
squared difference between estimator and true values of the parameter

MSE=Variance + Bias2

MSE [θ̂] = E
[
(θ̂ − θ)2

]
=

= E

[(
θ̂ − E

[
θ̂
])2
]

+
{
E
[
θ̂ − θ

]}2
= Var [θ̂] + (Bias[θ̂])2

Var [θ̂] = E

[(
θ̂ − E

[
θ̂
])2
]

Bias[θ̂] = E
[
θ̂ − θ

]
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Mean Square Error

The mean square error of f̂ (x) at a fixed point x0, reflects the trade-off
between the two components (variance and bias):
Let us use x0 instead of the usual x, to highlight that we are interested in

local properties of the estimator, i.e. the property at a particular point x0

Here f (x0) plays the role of θ, and f̂h(x0) the role of θ̂

MSE [f̂h(x0)]

MSE [f̂h(x0)] = E
[
(f̂h(x0)− f (x0))2

]
=

= Var [f̂h(x0)] +
{
E
[
f̂h(x0)− f (x0)

]}2
= Var [f̂h(x0)] + (Bias[f̂h(x0)])2

Var [f̂h(x0)] = E

[{
f̂h(x0)− E

[
f̂h(x0)

]}2
]

Bias[f̂h(x0)] = E
[
f̂h(x0)

]
− f (x0)
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Mean Square Error

We have
Var [f̂h(x0)] = E

[{
f̂h(x0)− E

[
f̂h(x0)2

]}]
BIAS [f̂h(x0)] = E

[
f̂h(x0)

]
− f (x0)

The minimization of the MSE with respect to h (if we knew the true
f () ) is a trade-off between two characteristics:

oversmoothing (if we choose high values of h to reduce the variance)
and

undersmoothing (if we choose small h to reduce the bias).

Marcello Chiodi (Università di Palermo) Non parametric statistical estimation Stuttgard 2019 97 / 192



Mean Integrated Square Error (MISE)

MSE measures the accuracy of the estimator f̂h(x0) of the density f ()
at a particular point x0. It is a local measure

A global measure of goodness of fit, the MISE , can be obtained by
integrating the value of MSE over the whole range of x :

MISE (f̂h) =

∫ +∞

−∞
MSE (f̂h(x))dx

Under certain assumptions on f (·) and K (·) we will try to choose, for
the construction of a kernel estimator, the value of h that minimizes
the MISE.
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Integrated Mean Square Error (MISE)

This measure is not always optimal, (and not necessarily the integral
exists or is finite) and has the disadvantage of measuring squared
absolute distances and not relative distances: an error of 0.01 in the
estimate of f (x) should have a different importance according to the
fact that f (x) is equal to 0.3 or 0.02!

The MISE as a measure of the overall behavior of f̂h(x) is not optimal
but it is computable, or at least approximated, in many standard
situations.

For analytical convenience we take as a measure of the overall
behavior of the estimator of a density
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MISE: operators M and I

It should be stressed the difference between the operators M and I
used in the definition of the MISE

M (mean): expected value of the squared error (relative to the
random distribution of X , and for given f (·), or computed by
simulation)

I (Integrated): integration with respect to x in the domain of X

The two operations should not be confused. It is very important to keep in
mind and understand their difference.
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MISE: operators M and I

M and I of MISE

Operator M in the MSE is relative to the sampling distribution of
f̂h(x0), x0 is fixed, the expected value is based on the probability
distribution of the random variables X1,X2, ...,Xn

The operator I instead is simply an integration with respect to a real
variable (MSE (x) is integrated with respect to x), we could
approximate this with a sum on a finite set of x values which cover
well its range of variation.

Marcello Chiodi (Università di Palermo) Non parametric statistical estimation Stuttgard 2019 101 / 192



Simulations

Example ( R code for simulations)

codice R
R
codiceNP2013simul1.R

source("simulazioni kernel2012functions.R")

Examples in R on the difference between the operators M and I used
in the definition of the MISE through simulations

R code

EXPLAIN THE ELEMENTS OF THE FIGURE
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s o u r c e ( ” s i m u l a z i o n i k e r n e l 2 0 1 2 f u n c t i o n s . R” )

## 1: esempi di simulazione da una mistura di due normali

## su ogni campione di ampiezza n viene stimata una densit~A con metodo kernel

## e finestra fissa (in questo esempio)

system . t ime ( f<−s i m u l . normalmix2 ( n=100 ,ncamp=5,hmet=” f i x e d ” , hs =.5 , n g r i d =100 , t p a u s e =0, i k e y=T, p l o t . band=FALSE , p l o t=TRUE) )

## spiegazione dettagliata della simulazione

system . t ime ( f<−s i m u l . normalmix2 ( n=100 ,ncamp=5,hmet=” f i x e d ” , hs =.5 , n g r i d =100 , t p a u s e =1, i k e y=F , p l o t=TRUE) )

## altri valori di h

system . t ime ( f<−s i m u l . normalmix2 ( n=100 ,ncamp=5,hmet=” f i x e d ” , hs =.1 , n g r i d =100 , t p a u s e =1, i k e y=F , p l o t=TRUE) )

system . t ime ( f<−s i m u l . normalmix2 ( n=100 ,ncamp=5,hmet=” f i x e d ” , hs =1.2 , n g r i d =100 , t p a u s e =1, i k e y=F , p l o t=TRUE) )

## simulazione completa, spiegazione delle bande

## m,m+s,m-s

## mediana, 5 percentile , 95 percentile

## spiegazione dei calcoli

system . t ime ( f<−s i m u l . normalmix2 ( n=25,ncamp=500 , hmet=” f i x e d ” , hs =1,
n g r i d =100 , t p a u s e =0, i k e y=F , p l o t=TRUE) )

system . t ime ( f<−s i m u l . normalmix2 ( n=100 ,ncamp=500 , hmet=” f i x e d ” , hs =1,
n g r i d =100 , t p a u s e =0, i k e y=F , p l o t=TRUE) )

system . t ime ( f<−s i m u l . normalmix2 ( n=400 ,ncamp=500 , hmet=” f i x e d ” , hs =1,
n g r i d =100 , t p a u s e =0, i k e y=F , p l o t=TRUE) )

system . t ime ( f<−s i m u l . normalmix2 ( n=1600 ,ncamp=500 , hmet=” f i x e d ” , hs =1,
n g r i d =100 , t p a u s e =0, i k e y=F , p l o t=TRUE) )

### stessa simulazione con un n diverso

## differenze fra n e ncamp

x11 ( )
system . t ime ( f<−s i m u l . normalmix2 ( n=500 ,ncamp=1000 , hmet=” f i x e d ” , hs =.5 , n g r i d =100 , t p a u s e =0, i k e y=F , p l o t=TRUE) )

### con un h diverso

x11 ( )
system . t ime ( f<−s i m u l . normalmix2 ( n=100 ,ncamp=1000 , hmet=” f i x e d ” , hs =.1 , n g r i d =100 , t p a u s e =0, i k e y=F , p l o t=TRUE) )
x11 ( )
system . t ime ( f<−s i m u l . normalmix2 ( n=100 ,ncamp=1000 , hmet=” f i x e d ” , hs =1.5 , n g r i d =100 , t p a u s e =0, i k e y=F , p l o t=TRUE) )

#dev.off()

s a v e . image ( ” l e z i o n e 3 1 −1−2012.RData” )

## calcolo del bias e della varianza mediante simulazione

## confronto con f" e con f

##

b i a s =( f $m−f $ t r u e )
b i a s
v=f $ s ˆ2
p l o t ( d i f f ( d i f f ( f $ t r u e ) ) , b i a s [−c ( 1 , 1 0 0 ) ] )
p l o t ( f $ t r u e , v )
l=lm ( v ˜ f $ t r u e )
a b l i n e ( l )

## plot unico

p l o t . b i a s v ( f )

##################

##

## approssimare i valori teorici asintotici di bias e varianza

##################

j h=0
nh=15
n g r i d =100

m=m a t r i x ( 0 , nh , n g r i d )
s=m
b=m
hvec=seq ( 0 . 1 , 2 , l e n=nh )
f o r ( j i n 1 : nh ){
p r i n t ( j )
f=s i m u l . normalmix2 ( n=100 ,ncamp=1000 , hmet=” f i x e d ” , hs=hvec [ j ] , n g r i d =100 , t p a u s e =0, i k e y=F , p l o t=FALSE)
f t r u e=f $ t r u e
x g r i d=f $ x g r i d

m[ j , ]= f $m
s [ j , ]= f $ s
b [ j , ]= f $m−f t r u e
}

b i=rowSums ( b ˆ2)
v i=rowSums ( s ˆ2)
par ( mfrow=c ( 2 , 2 ) )
p l o t ( hvec , b i+v i )
t i t l e ( ”n=100 ,ncamp=1000” )
p l o t ( hvec , b i+v i , t y p e=” l ” )
p l o t ( hvec , b i )
l i n e s ( hvec , b i )

p l o t ( hvec , v i )
l i n e s ( hvec , v i )

op50=o p t i m i z e (eqm . sim , i n t e r v a l=c ( 0 . 0 2 , 1 . 5 ) , n=50,ncamp=500)

op50

op100=o p t i m i z e (eqm . sim , i n t e r v a l=c ( 0 . 0 2 , 1 . 5 ) , n=100 ,ncamp=500)

vecn=c ( 5 0 , 1 0 0 , 2 0 0 , 4 0 0 , 8 0 0 )
ve ch op t=vecn
veceqm=vecn

f o r ( j i n 1 : 5 ){
opn=o p t i m i z e (eqm . sim , i n t e r v a l=c ( 0 . 0 2 , 1 . 5 ) , n=vecn [ j ] , ncamp=5000)
ve ch op t [ j ]=opn$minimum
veceqm [ j ]=opn$ o b j e c t i v e

}

> vecn
[ 1 ] 50 100 200 400 800

> ve ch op t
[ 1 ] 0 .8117943 0.6822018 0.5240294 0.4611390 0.3693806

> veceqm
[ 1 ] 0 .057875223 0.034914155 0.020596440 0.011765215 0.006925485

par ( mfrow=c ( 2 , 2 ) )
p l o t ( vecn , vechopt , t y p e=”b” )
p l o t ( vecn , veceqm , t y p e=”b” )

lm ( l o g ( veceqm ) ˜ l o g ( vecn ) )
lm ( l o g ( ve ch op t ) ˜ l o g ( vecn ) )

p l o t ( l o g ( vecn ) , l o g ( v ec ho pt ) , t y p e=”b” )
p l o t ( l o g ( vecn ) , l o g ( veceqm ) , t y p e=”b” )

> lm ( l o g ( ve ch op t ) ˜ l o g ( vecn ) )

> lm ( l o g ( veceqm ) ˜ l o g ( vecn ) )
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Simulations

Simulations

To show basic behaviour we use code in
simulazioni kernel2012functions.R

1 Fix the true density (green line)

2 Draw a sample of size n (not shown)

3 Estimate a kernel density with a fixed h (the black lines)

4 repeat steps 2 and 3 ns times (500 in these examples)

5 Compute summary statistics (average , median, quartiles,...) for each
point of the x axis

6 Draw summary statistics (blue and red lines)
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MISE computation through simulations: Explanation of
elements

Figure: Simulations from a mixture of two normal distributions: Explanation of
elements
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MISE computation through simulations

Samples of size 25

Figure: Simulations from a mixture of two normal distributions
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MISE computation through simulations

Samples of size 100

Figure: Simulations from a mixture of two normal distributions
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MISE computation through simulations

Samples of size 400

Figure: Simulations from a mixture of two normal distributions
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MISE computation through simulations

Samples of size 1600

Figure: Simulations from a mixture of two normal distributions
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Basic asymptotic results (n→∞)

To obtain basic asymptotic results (that is, as n→∞), it is necessary to
assume some dependence of h by n and therefore in this section the
symbol h(n) will be used h(n) should be a decreasing function. The key
results are:

Asymptotic Bias and Variance

Asymptotic Bias(f̂h(n)(x)) =
1

2
h(n)2 f ′′(x)

in simulations, bias seems small near inflection points

Asymptotic Variance(f̂h(n)(x)) =
f (x)

nh(n)

∫
<

K (t)2dt

in simulations, variance seems higher near maximum points

Combining the two expressions we obtain the expression of asymptotic
mean square error (AMSE = AV + AB2)
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Asymptotic results (n→∞)

slides repeated later!
Some important considerations are deduced:

h(n) has a direct effect on bias but an inverse one on variance

Bias is a function of h(n): if we want it to be asymptotically equal to
zero, the bandwidth h(n) must tend to zero as n→∞ (and this
seems quite reasonable)

Instead the variance is an inverse function of h(n): If we want that
this variance is asymptotically equal to zero, it is necessary that 1

nh(n)
tends to zero.

and then nh(n) must diverge.
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asymptotic results

Combining the two previous requirements, h(n) must tend to zero as
n→∞, to delete the bias, but slowly , because to delete also the
asymptotic variance we must have:

lim
n→∞

1

nh(n)
= 0 and so: lim

n→∞
nh(n) =∞

and then n−1 must be an infinitesimal of higher order than h(n)

dependence (local) from f (x) and f ′′(x)

the asymptotic behavior of f̂ (x), in terms of order of
magnitude, is determined by h(n) and not by the choice of K (·)
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asymptotic results

A value of h(n) that meets the previous requirements and that minimizes
the asymptotic mean squared error is:

h(n)opt = n−1/5

(
A(K )

f (x)

f ′′(x)

)1/5

It depends on x (and therefore we will minimize an integrated form of the
mean square error)
It must be noted that the order of magnitude is n−1/5, in this case the two
components of the AMSE are both of order of n−4/5 (indeed AV = 4AB2)
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On bias and variance

Let us consider, in the standard expression of the kernel estimator, x fixed,
while the xi are n determinations of random variablesYi (to avoid
confusion with the x fixed) independent and equally distributed according
to a density distribution f (y) (in the domain D)
We have:

E
[
f̂h(x)

]
=

∫
D

h−1K

(
x − y

h

)
f (y)dy , (9)

n V
[
f̂h(x)

]
=

∫
D

h−2K

(
x − y

h

)2

f (y)dy

−
[∫
D

h−1K

(
x − y

h

)
f (y)dy

]2

. (10)
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Bias and variance

The bias of f̂h(x) depends on h (knowing anyway that h depends on n!).

B(x) = E
[
f̂h(x)

]
− f (x) =

∫
D

h−1K

(
x − y

h

)
f (y)dy − f (x)

Consider the change of variable y = x − ht, and then |dy | = h|dt| then:

B(x) =

∫
D∗

K (t)f (x − ht)dt − f (x) =

∫
D∗

K (t)(f (x − ht)− f (x))dt
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asymptotic results

The Taylor series expansion is:

f (x − ht) = f (x)− htf ′(x) +
1

2
h2t2f ′′(x) + or [(ht)2]

So with the assumptions on K (·):

B(x) = −hf ′(x)

∫
D∗

tK (t)dt +
1

2
h2f ′′(x)

∫
D∗

t2K (t)dt + . . .

=
1

2
h2f ′′(x)k2 + o(h2)

and the integrated squared bias is:

Asymptotic integrated squared Bias

∫
D

B(x)2dx ≈ 1

4
h4k2

2

∫
D

f ′′(x)2dx
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Asymptotic results

For the variance, from (9) and (10):

V
[
f̂h(x)

]
= n−1

∫
D

h−2

{
K

(
x − y

h

2
)}

f (y)dy

−n−1(f (x) + B(x))2

Using the Taylor series approximation as before, (and omitting the terms
in n−1 and h) we have:
—————————–
proof
—————————–
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asymptotic results

—————————–
proof (???)
—————————–

var
[
f̂h(x)

]
≈ n−1h−1f (x)

∫
D∗

K (t)2dt

and then (integrating with respect to x)∫
D
V
[
f̂h(x)dx

]
≈ 1

n h

∫
D∗

K 2(t)dt

Therefore you can see the trade-off between bias and variance in the
choice of h.
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Asymptotic results

In order to minimize the MISE(h) with respect to h (or better, its
asymptotic expression AMISE):

AMISE(h) =
1

4
h4k2

2

∫
D

f ′′(x)2dx + n−1h−1

∫
D∗

K (t)2dt

differentiating with respect to h and equating to zero (∂AMISE(h)
∂h = 0),we

have, :

hopt = k
−2/5
2

{∫
D∗

K (t)2dt

}1/5{∫
D

f ′′(x)2dx

}−1/5

n−1/5

We observe that:

the ideal value of h converges to zero with increasing n but with a
very slow rate;

since
∫
D f ′′(x)2dx measures the quickness of the fluctuation of the

density f (x), smaller values of h will produce more fluctuating density
estimates.
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Minimization of MISE (asymptotically)

Substituting the value of hopt to the expression of the MISE in
correspondence of the optimal value of h, we have:

AMISE(hopt) =
5

4
C (K )

{∫
D

f ′′(x)dx

}1/5

n−4/5

with

C (K ) = k
2/5
2

{∫
D∗

K (t)2dt

}4/5

Therefore K (·) should be chosen in order to return a small value of C (K ),
because in this case it would have a small MISE (if we were able to choose
h correctly!).
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Order of infinitesimals in the expression of AMISE

Order of infinitesimal of h

h(n)opt = O
(

n−1/5
)

h(n) decreases, as n diverges, but slowly

Substituting this value in AMISE we have:

AMISE (Asymptotic MISE)

AMISE [f̂ (x); h(n)] = O
(

n−4/5
)

In the regular parametric case we have:

V [f̂ (x); θ̂] = O
(
n−1
)

for example for the classical sample mean: V (M) = σ2

n
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asymptotic results : optimal K (·)

We need to minimize the value of C (K ) ( or
∫

K (t)2dt) under the
constraints

∫
D K (t)dt = 1 and

∫
D t2K (t)dt = 1 (assuming k2 = 1). It is

shown that the solution to this problem is given by:

Ke(t) =

{
3

4
√

5

(
1− 1

5 t2
)
−
√

5 ≤ t ≤
√

5

0 otherwise
.

Ke(t) is known as the Epanechnikov kernel .
We can talk about efficiency of each symmetric kernel with respect to
Ke():

eff (K ) =

{
C (Ke)

C (K )

}5/4
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Rules to choose h

Exploiting previous relationships we can get some rules (or better
some guidelines) for the choice of h , for a given set of observed data.

It is clear that the properties of the estimator depend (as already
seen) on the characteristics of the true density function f (x) in the
whole range of x ,

So it is unlikely that we can talk about optimal rules in absolute
sense
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Silverman Rule

The Silverman rule

Silverman rule ( assuming that f (x) is normal )

h =

(
4

3n

) 1
5

σX

(in R σX is estimated with a robust estimator to avoid over-smoothing due
to some observations far away from the mass of data )

The rule of Silverman

The use of Silverman rule, in absence of other informations, gives a
satisfactory approximation as an initial estimate of f (x)
very useful in applications
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iterative techniques

Since, as we have seen , the value of h that minimizes integrated
mean square error is asymptotically given by:

hopt = n−1/5

(
A(K )n

∫
D

f ′′(x)dx

)1/5

we can iteratively estimate h by giving an initial estimate of f and
then using it to evaluate the curvature of f (·) in the integral above ,
and replacing iteratively .
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And the likelihood ( to estimate h) ?

Likelihood ?

why not?

Let us try to maximize the likelihood ...

L(h) =
∏

f̂ (xi , h))

construction of the likelihood

L(h; x1, . . . , xn) =
n∏

i=1

f̂ (xi ; h) =
n∏

i=1

1

n

n∑
j=1

1

h
K (

xi − xj
h

)

———————————
recall codes in R

———————————
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Likelihood with two values of h

Density with two values of h (see the properties of f̂ (x , h) when h → 0
and according to x = xi or not )

Figure: Likelihood computed on a sample Figure: Likelihood computed on a sample
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Likelihood ?

You would get an estimator of zero width that focuses the whole mass on
the observed data !
(on the other hand , only according to the observed data , and without
parametric models, the most probable are the same data !)

L(h; x1, . . . , xn) =
n∏

i=1

f̂ (xi ; h)) =
n∏

i=1

1

n

n∑
j=1

1

h
K (

xi − xj
h

)

In the likelihood the problem is when i = j (these are the terms that lead
to divergence)
what can we do? try to remove them ....
and define a new criterion. We can therefore maximize a CV likelihood (
Cross Validation )
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Cross Validation

Cross Validation

We define f̂−i (xi ) as an estimator of f (xi ) based on n − 1 sample values
obtained by excluding xi

f̂−i (xi ; h) =
1

n − 1

n∑
j=1,j 6=i

1

h
K

(
xi − xj

h

)

f̂−i (xi ; h): an estimate of density at xi obtained without using xi !!!
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Likelihood Cross Validation

We build a likelihood function based on the values f̂−i (xi , h) defined:

L(h, x1, . . . , xn) =
n∏

i=1

f̂−i (xi , h) =
n∏

i=1

1

n − 1

n∑
j=1,j 6=i

1

h
K

(
xi − xj

h

)

We deleted the terms that lead to the divergence of the
likelihood

Since one can not directly maximize the likelihood (because we would
get a degenerated estimator that focuses the entire mass on the
observed data) we can maximize a CV likelihood (Cross Validation).
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Cross validation density estimation

Figure: CV function with two methods Figure: Estimated densities
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Cross Validation

In compact form , and using logarithms, we determine h such that:

ĥ : max
h

n∑
i=1

log(f̂−i (xi , h))
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Maximum Likelihood Cross Validation

There are two forms of cross-validation : maximum likelihood CV and
least- squares CV .
In the estimation of the integrated squared error:∫

D

{
f̂ (x)− f (x)

}2
dx

some quantities involving f̂ (x) are estimated by using the estimate f̂−i (x)
non-parametric estimate obtained deleting the i- th observation
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Cross Validation

Least squares CV
The least squares method measures the distance between f and f̂ by the
Integrated Squared Error (ISE) .

dI (h) =

∫
(f̂h − f )2(x)dx

=

∫
f̂ 2
h (x)dx − 2

∫
(f̂hf )(x)dx +

∫
f 2(x)dx

Note that in this formula∫
f̂ 2
h (x)dx is calculated from the data∫

f 2(x)dx does not depend on h∫
(f̂hf )(x)dx must be estimated from the data.
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Cross Validation

Subtracting the constant term , the minimization of the ISE corresponds to
minimization of the quantity

dI (h)−
∫

f 2(x)dx =

∫
f̂ 2
h (x)dx − 2

∫
(f̂hf )(x)dx

We can express the last term as an expected value∫
(f̂hf )(x)dx = EX [f̂h(x)]

We can estimate this term:

EX [f̂h(X )] =
1

n

n∑
i=1

f̂−i (xi ; h)

Therefore, using this estimate we can obtain a good value of h minimizing:

CV (h ) =

∫
f̂ 2
h (x)dx − 2

n

n∑
i=1

f̂−i (xi , h)

with respect to h
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Cross Validation property

Recall of asymptotic properties of the of Least Squares Cross
Validation method ( ISE (CV ) tends ISE with optimal h )

Setting the CV likelihood from a hypothetical additional Y
observation ( example on the board )

matches the Kullback - Leibler distance

Recall the asymptotic properties of the Likelihood Cross Validation
method (not many asymptotic properties , sensitivity to outliers , eg
with |X1 − X2| = R and then f̂1(X1) = 0 if h < R and then ... )

We need stronger conditions on f (x) and K (·) (support and behavior
in the tails)
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Estimation of a multivariate density function

Multivariate density estimation

The problem substantially does not change but only at a first
sight!! , compared to the univariate case .

In fact we will soon see that the similarities are only technical, but
there are some substantial differences and complications

Actually it does not only concern the case of the of density or intensity
estimation, but generally, the problem of multivariate data analysis

Special features of the multivariate case

Definition of the concept of distance between points in Rd

Filling a region of Rd , in particular when d is not small
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Density of points (uniform)

R code from: dimensions.R ./dimensions.R

Figure: Sample of size 100 from a uniform distribution, d=1 and d=2
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./dimensions.R


Density of points (uniform)

R code from: dimensions.R

Figure: Sample of size 100 from a trivariate uniform distribution, d=3
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Density of points (normal)

R code from: dimensions.R

Figure: Sample of size 100 from a normal distribution, d=1 and d=2
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Density of points (normal)

R code from: dimensions.R

Figure: Sample of size 100 from a trivariate normal distribution, d=3
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Density of points (normal)

R code from: dimensions.R

Some new concept

New concepts passing fromm 1 to d dimensions:

Sparsity

Curse of Dimensionality

Fifferent definitions of distance
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Estimation of a multivariate density function

We start with the bivariate case , generalizing , as long as possible, the
approach used in the univariate case .
The definition of a bivariate density function can be obtained starting from
the distribution function , which is given by:

FX1,X2(x1, x2) = Prob {X1 ≤ x1 ∩ X2 ≤ x2}

if F (x) is differentiable then

fX1,X2(x1, x2) =
∂2FX1,X2(x1, x2)

∂x1∂x2
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Difficulties in the definition of f̂ (x1, x2)

There are the same conceptual difficulties in the definition of an
estimator for a density function of a bivariate variable as in the case
of simple variables. Namely the conceptual difference between the
theoretical density function and the distribution function for a random
variable (simple or multiple) .

While the distribution function of a d−variate random variable is
always defined as the probability that X fall in a certain intersection
of open intervals (and the equivalent empirical is easy to construct) ,
the density is always defined as the derivative (of order d ) of that
function.

Once again, this difficulty concerns with the difficulty of defining the
probability for a continuous variable; this probability is defined for
regions and not for points.
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bivariate density estimation : approximations

Let’s try again to approximate the bivariate density at a point; let us
return to the approximation of the probability in a small region
around (x1, x2):

f (x1, x2) ≈

Prob
{

x1 − δ1
2 < X1 ≤ x1 + δ1

2

⋂
x2 − δ2

2 < X2 ≤ x2 + δ2
2

}
δ1δ2

The situation is altered by the fact that we have regions and not
intervals in R2: and it will be even worse in Rd
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Approximation of the incremental ratio

Again a first approoximation is given by the histogram
which provides discontinuous estimate of the density
Furthermore we have to divide a region into rectangles (not a

straight line into segments)

Marcello Chiodi (Università di Palermo) Non parametric statistical estimation Stuttgard 2019 154 / 192



approximation of the incremental ratio as average of
contributions

In the univariate case every point xi contributes to the estimate of f if it is
far from x less than h, and we write f̂ (x) as the arithmetic mean of the
contribution of each point .
Now every point xi ( bivariate case , but even d - variate) contributes to
estimate whether each component (xij) is far from xj less than
hj(j = 1, 2, . . . , d).
But the concept of distance can have a wide definition in d dimensions.
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Approximation of the as average of contributions

bivariate case

approximation of the incremental ratio as average of the contributions of
the individual observations

f̂ (x1, x2) =
1

4nh1h2

n∑
i=1

I
(

x1 − h1 < xi1 ≤ x1 + h1

⋂
x2 − h2 < xi2 ≤ x2 + h2

)

This is an intuitive extension of the approximation of the incremental ratio
to the d−variate case :
I () is the indicator function.
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Average of uniform densities

We can express all as a function of a bivariate standardized uniform
density (and then d− variate) in a region bounded by the intervals (-1 ,
1), collecting the terms appropriately :

f̂X1,X2(x1, x2) =
1

h1h2 n

n∑
i=1

W

(
x1 − xi1

h1
,

x2 − xi2
h2

)
(11)

where we define:

W (z) =

{
1
22 (|z1| ≤ 1) ∩ (|z2| ≤ 1)
0 elsewhere

From here we can achieve new generalizations of kernel estimators that
avoid the steps in the estimate of f̂ (x1, x2) obtained from ( 11 )
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bivariate kernel estimator

To obtain a kernel estimator of a bivariate density we can replace the
uniform density in ( 11) with another generic bivariate density function
K (·, ·)

Generalization of univariate kernel

f̂X1,X2(x1, x2) =
1

h1h2 n

n∑
i=1

K

(
x1 − xi1

h1
,

x2 − xi2
h2

)
(12)

the function K (·, ·) is a bivariate kernel function, in standardized
variables (zero mean and unit variance , or at least constant)

h1 and h2 are two bandwidths, or smoothing parameters (one for each
dimension)

1
h1

1
h2

K
(
x1−xi1
h1

, x2−xi2
h2

)
is the weight of each observation in the

computation of f̂ (x1, x2) .
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Bivariate kernel estimator

Each point spreads its influence as a function of K (·, ·) and (h1, h2)

K (·, ·) is a bivariate density function centered on zero and with
standardized components (but not necessarily independent!)

If the kernel function has independent components K1(·) and
K2(·) , we have:

f̂X1,X2(x1, x2) =
1

h1h2 n

n∑
i=1

K1

(
x1 − xi1

h1

)
K2

(
x2 − xi2

h2

)
(13)

The most frequent example for Kj(·)(j = 1, 2) is the density of a
standard normal distribution.
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Two estimates ( with a bivariate normal kernel
independent components ) on the same sample , with
different h

./panel_kernel_biv2.R

interactive execution with slider

Figure: Sample of size 200 Figure: Sample of size 200
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./panel_kernel_biv2.R


Density plot (with a normal bivariate kernel with
independent components), with different h

interactive execution with slider and rotations

Figure: Sample of size 200
Figure: Sample of size 200
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bivariate kernel estimator and distance of the points in R2

Each observed point xi contributes to the estimated density in the
region that surrounds its influence as a function of K (·, ·) and (h1, h2)

For each coordinate, observations xi closer to x weight more. Larger
h smooth the weight of closer observation and spread the influence of
each observed xi over a wider range.

But what do we mean by close in multivariate context ?

In the univariate case , in R1 the distance is unquestionably measured
by the segment x − x1 . but how to measure it in R2 and , in
general, in Rd ?
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Bivariate kernel estimator and distance of points in R2

Everything seems simple and obvious turning to the two-dimensional
case , but already in the two previous examples it is not.

Let us limit for now to a bivariate kernel with independent
components and consider the bivariate uniform kernel on rectangular
domains:

f̂X1,X2 (x1, x2) =
1

4h1h2 n

n∑
i=1

I

(∣∣∣∣x1 − xi1
h1

∣∣∣∣ ≤ 1

)⋂(∣∣∣∣x2 − xi2
h2

∣∣∣∣ ≤ 1

)
(14)

and a bivariate normal kernel ( independent components ) :

f̂X1,X2 (x1, x2) =
1

h1h2 n

n∑
i=1

φ

(
x1 − xi1

h1

)
φ

(
x2 − xi2

h2

)
(15)

where φ(·) is the density of a standard normal
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Bivariate kernel estimator and distance of points in R2

It ’s clear that in the uniform kernel ( 14 ) points xi give the same
contribution on a rectangle area

But in a normal kernel with independent components ( 15 ) points xi
gives the same contribution on an ellipse ( centered at xi and with
axes proportional to the hi and parallel to the Cartesian axes )

Similar considerations can be done in the multivariate case in Rd (
with hyper- parallelepipeds and ellipsoids )
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Two very different examples of bivariate pattern of points

Figure: Spatial distribution of cases and
controls

Figure: Spatial distribution of seismic
events (California)
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Bivariate kernel estimator with correlated components

If we leave the case of kernel with independent components,
we could think about a bivariate normal kernel with correlated
components

In this case, xi gives the same contribution to the points of the
ellipse centered at xi but with axes not parallel to the Cartesian
axes . In the latter ’ case, the ellipses have eccentricity determined
by ρ
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Bivariate kernel estimator with correlated components

Density estimation based on a bivariate normal kernel ( components
with correlation ρ ) :

f̂X1,X2 (x1, x2) =
1

h1h2 n

n∑
i=1

φbiv

(
x1 − xi1

h1
,

x2 − xi2
h2

, ρ

)
(16)

φbiv(z1, z2, ρ) =
1

2π
√

1− ρ2
e
− 1

2(1−ρ2)
[z2

1−2ρz1z2+z2
2 ]

is the density of a bivariate normal with correlated standardized
components.
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Multivariate Kernels

In general, if K(·) is a Multivariate kernel function (components with zero
mean and standardized dependent or independent), in compact form the
d−variate kernel estimator is given by:

multivariate kernel estimator

f̂X(x) =
1

n
√
|H|

n∑
i=1

K(x− xi ,H) (17)
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multivariate normal Kernel

multivariate normal Kernel

A natural and comfortable choice for the kernel K(·) is a multivariate
normal density function

K(x) = ‖Σ‖−
1
2 (2π)−d/2 exp

{
−1

2
[x− µ]TΣ−1[x− µ]

}
(18)

where µ is a d component vector of mean values
Σ is a d × d variance covariance matrix

For brevity of notation H is a matrix of smoothing parameters (Σ if we use
a multivariate normal kernel), which generally includes on the main
diagonal the terms related to the parameters of scale and off-diagonal
terms that measure the correlations ( it will be a matrix of variances and
covariances for the multivariate normal kernel, or correlation for normal
multivariate with standardized components )
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Kernel multivariate independent components

A multivariate kernel can be with independent components
(isotropic kernel)

The contribution of each point (with standardized coordinates)
xj−xij
hj

is constant for points x of hypersphere centered on xi

and in ellipsoids with axes parallel to the coordinate axes if the
coordinates are not standardized .

We can express the estimator with kernel with independent
components in relation to the univariate kernel functions ( with d
scale parameters hj)
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multivariate Kernel with independent components

multivariate Kernel with independent components

f̂X(x) =
1

n
∏d

j=1 hj

n∑
i=1

d∏
j=1

K

(
xj − xij

hj

)
(19)

xT = {x1, x2, . . . , xj , . . . , xd}

given n d−variate observations xi , i = 1, 2, . . . , n

xTi = {xi1, xi2, . . . , xid}

evidently ( 19) is a special case of ( 17 ) when the H matrix is
diagonal .
( and with the notation adopted here hj =

√
hjj)
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Multivariate Kernel with correlated components

If the symmetric matrix H is not diagonal , we have a kernel
estimator with correlated components.

The contribution of each point is constant for the points x of an
ellipsoid with axes not parallel to the coordinate axes .

It is sometimes referred to as anisotropic kernel but it is not a
general terminology

In general we can also fix some non-diagonal components equal to
zero , and estimating the other .
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Multivariate kernel with correlated components : example

example from my paper

anisotropic space-time kernel ( anisotropic in the xyz space) versus an
isotropic space-time kernel :

h =


hx hxy hxz 0
hxy hy hyz 0
hxz hyz hz 0
0 0 0 ht

 or h =


hx 0 0 0
0 hy 0 0
0 0 hz 0
0 0 0 ht



Marcello Chiodi (Università di Palermo) Non parametric statistical estimation Stuttgard 2019 181 / 192



kernel multivariate variables bands (just a hint)

The concept of variable bands , or Adaptive kernel now must be
understood in a multivariate sense , and concerns the entire H matrix.

A direct extension of the univariate concept regards the possibility of
working with bands of varying widths for each coordinate

however, you may think you have correlation structures varying as a
function of sampling points:

f̂X(x) =
1

n
√
|H|

n∑
i=1

K(x− xi ,Hi )

A very effective adaptive method is the nearest neighbor
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Dimensionality

So far we have seen examples with small values of d (2,3,4). What
happens when d is high ?

Increase in the number of dimensions

It might seem that increasing the number of dimensions d everything
proceed in the same way , but ...

example

Marcello Chiodi (Università di Palermo) Non parametric statistical estimation Stuttgard 2019 184 / 192



The Curse of dimensionality

The Curse of dimensionality

As the number of dimensions d increases, and using equal width
intervals , the number of cells that divide the region Ωd of Rd grows
exponentially with d .

And the set of n points fills less and less significant areas of the
region d -dimensional

example
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examples

In a multivariate normal distribution, the quadratic form in the numerator
follows a χ2 distribution with d degrees of freedom

f ((X ))

f ((0))
∼ exp(−1

2
χ2
d)

considerations on the density and the fill volume of observation

round ( pchisq ( 1,1:10 ), 3)

[1] 0.683 0.393 0.199 0.090 0.037 0.014 0.005 0.002 0.001 0.000

For d = 1, 2, . . . , 10 pchisq (1, d ) represents the probability that a
d−variate normal observation has a norm less than unity ( part of a
hyper-sphere of unit radius )
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examples

round ( exp (- qchisq ( .5,1:10 ) / 2 ), 3)

[1] 0.797 0.500 0.306 0.187 0.114 0.069 0.042 0.025 0.015 0.009

For d = 1, 2, . . . , 10 exp(- qchisq (.5 , d) / 2 ) represents the
relative density of a median quadratic form
For example, with 5 variables (d = 5) 50 per cent of the observations on
average should have a density of 11% if compared to the maximum
theoretical density !

Density in d - dimensions

Increasing the number of dimensions, this median density decreases
dramatically
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Hypersphere Volume

density of the hyper - sphere
if d is equal to the volume of hypersphere is:

Vol(Sd) =
πd/2rd

d!

while the volume of the circumscribed hypercube :

Vol(CD) = (2r)d

Clearly their ratio tends to diverge from zero to d !
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Asymptotic results for d−variates kernels

optimum hd(n)

hd(n)opt = O
(

n−
1

d+4

)
hd(n) decreases as n diverges, but slower for larger values for d

AMISE

AMISE [f̂d(x); h(n)] = O
(

n−
4

d+4

)
While in the parametric case we have

AMISE [f̂d(x); θ̂] = O
(
n−1
)
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